Real Time Object Detection as a Random Walk Process

Ian R. Fasel
Department of Cognitive Science and
Machine Perception Laboratory
University of California, San Diego
La Jolla, CA 92093-0515

Gwen Littlewort-Ford
Machine Perception Laboratory
Institute for Neural Computation
University of California, San Diego
La Jolla, CA 92093-0515

Javier R Movellan
Machine Perception Laboratory
Institute for Neural Computation
University of California, San Diego
La Jolla, CA 92093-0515

Abstract

We describe a general approach for very fast automatic object detection inspired on the ideas of sequential statistical decision making. Instead of making decisions at fixed time and with a fixed representation, in sequential decision making one progressively accumulates information until enough evidence is gathered to make a decision. The accumulation of evidence as a function of time can be seen as a random walk process. The time to cross threshold typically changes from pattern to pattern, typically resulting in significant gains on average speed. The approach we propose can be seen as a fine-grain generalization of the cascaded recognition method recently explored by Viola and Jones Viola and Jones (2001). Instead of a cascade of complex independent classifiers, as proposed in Viola and Jones, we use a sequence of very simple feature detectors which accumulate information over time until a threshold is reached. The approach is reminiscent of Ratcliff’s diffusion model of human reaction time in categorization’s tasks. We discuss results of the approach on a real-time automatic face detection system.

References