Problem 1 (10 points)

$$y'' + \lambda^2 y = f(x)$$

 $y(0) = 0$
 $y'(1) = 1$

Method 1

From the class notes of 3/5/04 we know that the solution of

$$Ly = f$$

$$B_1 y = d_1$$

$$B_2 y = d_2$$
(2)

will be of the form

$$y = y_1 + y_2 \tag{3}$$

where y_1 solves Ly=0 with inhomogeneous boundary conditions and y_2 solves Ly=f with homogeneous boundary conditions. What's left is to find these solutions and plug into the formula. y_1 will solve

$$y'' + \lambda^2 y = 0$$

 $y(0) = 0$
 $y'(1) = 1$ (4)

This ODE has a general solution of the form

$$y = A e^{i\lambda x} + B e^{-i\lambda x}$$
(5)

The boundary conditions give

$$A + B = 0$$

$$i \lambda (A e^{i\lambda} - B e^{-i\lambda}) = 1$$
(6)

The solution to this is

$$A = \frac{-i}{2 \lambda \cos \lambda}$$

$$B = \frac{i}{2 \lambda \cos \lambda}$$
(7)

So

$$y_1 = \frac{\sin(\lambda x)}{\lambda \cos \lambda} \tag{8}$$

Now, y₂ will solve

$$y'' + \lambda^2 y = f$$

 $y(0) = 0$
 $y'(1) = 0$ (9)

We found the solution to this last week using Green's functions. So the solution is

$$y = \int_{0}^{1} f(\xi) G(x | \xi) d\xi$$

$$G = \frac{\frac{-\cos(\lambda(\xi-1))\sin(\lambda x)}{\lambda \cos \lambda}}{\frac{-\cos(\lambda(x-1))\sin(\lambda \xi)}{\lambda \cos \lambda}} \quad 0 \le x < \xi$$

$$\frac{-\cos(\lambda(x-1))\sin(\lambda \xi)}{\lambda \cos \lambda} \quad \xi < x \le 1$$
(10)

So the solution to the inhomogeneous problem with inhomogeneous boundary conditions is

$$y = \frac{\sin(\lambda x)}{\lambda \cos \lambda} - \frac{\cos(\lambda (x-1))}{\lambda \cos \lambda} \int_{0}^{x} f(\xi) \sin(\lambda \xi) d\xi - \frac{\sin(\lambda x)}{\lambda \cos \lambda} \int_{x}^{1} f(\xi) \cos(\lambda (\xi-1)) d\xi$$
 (11)

Method 2

$$y'' + \lambda^2 y = f(x)$$

 $y(0) = 0$
 $y'(1) = 1$ (12)

Make the change of dependent variable

$$z = y + ax + b \tag{13}$$

This new variable satisfies

$$z'' + \lambda^{2} z = f(x) + \lambda^{2} (a x + b)$$

$$z(0) = b$$

$$z'(1) = 1 + a$$
(14)

choose b=0, a=-1 and define the new function $g(x)=f(x)-\lambda^2 x$.

$$z'' + \lambda^2 z = g(x)$$

 $z(0) = 0$
 $z'(1) = 0$ (15)

We found the solution to this last week using Green's functions. The solution is

$$z = \int_{0}^{1} g(\xi) G(x | \xi) d\xi$$

$$G = \frac{\frac{-\cos(\lambda(\xi-1))\sin(\lambda x)}{\lambda \cos \lambda}}{\frac{-\cos(\lambda(x-1))\sin(\lambda \xi)}{\lambda \cos \lambda}} \quad 0 \le x < \xi$$

$$\frac{-\cos(\lambda(x-1))\sin(\lambda \xi)}{\lambda \cos \lambda} \quad \xi < x \le 1$$
(16)

So the solution to the inhomogeneous problem with inhomogeneous boundary conditions is

$$y = x - \frac{\cos(\lambda(x-1))}{\lambda\cos\lambda} \int_0^x g(\xi)\sin(\lambda\xi) d\xi - \frac{\sin(\lambda x)}{\lambda\cos\lambda} \int_x^1 g(\xi)\cos(\lambda(\xi-1)) d\xi$$
 (17)

Problem 2 (5×7 points)

a)

$$J_{n} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(x \sin \theta - n\theta)} d\theta$$

$$x^{2} y'' + x y' + (x^{2} - n^{2}) y = 0$$
(18)

Compute derivatives

$$y' = \frac{i}{2\pi} \int_0^{2\pi} \sin\theta \, e^{i \, (x \sin\theta - n\theta)} \, d\theta$$

$$y'' = \frac{-1}{2\pi} \int_0^{2\pi} \sin^2\theta \, e^{i \, (x \sin\theta - n\theta)} \, d\theta$$
(19)

Plug in

$$x^{2}y'' + xy' + (x^{2} - n^{2})y = \frac{1}{2\pi} \int_{0}^{2\pi} (-x^{2} \sin^{2}\theta + ix \sin\theta + x^{2} - n^{2}) e^{i(x \sin\theta - n\theta)} d\theta$$
 (20)

Using a trig identity we may rewrite the integrand

$$\frac{1}{2\pi} \int_0^{2\pi} (\mathbf{x}^2 \cos^2 \theta + i \, \mathbf{x} \sin \theta - \mathbf{n}^2) \, e^{i \, (\mathbf{x} \sin \theta - \mathbf{n} \theta)} \, d\theta \tag{21}$$

Following the hint, we set

$$u = \frac{1}{2\pi} e^{i (x \sin \theta - n\theta)}$$
 (22)

and calculate

$$-\mathbf{u}_{\theta\theta} - 2i \mathbf{n} \mathbf{u}_{\theta} = \frac{1}{2\pi} \left(\mathbf{x}^2 \operatorname{Cos} \theta^2 + i \mathbf{x} \operatorname{Sin} \theta - \mathbf{n}^2 \right) e^{i \left(\mathbf{x} \operatorname{Sin} \theta - \mathbf{n} \theta \right)}$$
(23)

This last expression is simply the integrand we found above. So we have

$$x^{2} y'' + x y' + (x^{2} - n^{2}) y = \int_{0}^{2\pi} (-u_{\theta\theta} - 2 i n u_{\theta}) d\theta =$$

$$u_{\theta} (0) - u_{\theta} (2\pi) + 2 i n (u(0) - u(2\pi)) = \frac{i (x - n)}{2\pi} - \frac{i (x - n)}{2\pi} + 2 i n \left(\frac{1}{2\pi} - \frac{1}{2\pi}\right) = 0$$
(24)

b)

$$J_0(0) = \frac{1}{2\pi} \int_0^{2\pi} e^0 d\theta = 1$$
 (25)

$$J_{n}(0) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i \, n \, \theta} \, d\theta = \frac{1}{2\pi} \left(\frac{e^{-i \, n 2\pi}}{-i \, n} - \frac{e^{-i \, n \, 0}}{-i \, n} \right) = \frac{1}{2\pi} \left(\frac{1}{-i \, n} - \frac{1}{-i \, n} \right) = 0 \tag{26}$$

$$J_{1}'(0) = \frac{1}{2\pi} \int_{0}^{2\pi} i \sin\theta \, e^{-i\theta} \, d\theta \tag{27}$$

Breaking the complex exponential into it's real and imaginary parts gives

$$\frac{i}{2\pi} \int_0^{2\pi} \sin\theta \cos\theta \, d\theta + \frac{1}{2\pi} \int_0^{2\pi} \sin^2\theta \, d\theta = 1/2 \tag{28}$$

$$J_{n}'(0) = \frac{1}{2\pi} \int_{0}^{2\pi} i \operatorname{Sin}\theta \, e^{-in\theta} \, d\theta \tag{29}$$

Breaking the complex exponential into it's real and imaginary parts gives

$$\frac{1}{2\pi} \int_0^{2\pi} i \operatorname{Sin} \theta \operatorname{Cos} (\operatorname{n} \theta) d\theta + \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Sin} \theta \operatorname{Sin} (\operatorname{n} \theta) d\theta \tag{30}$$

By the orthogonality properties of Sine and Cosine we know that both of these integrals vanish for all n≠±1.

c)

Is the following true?

$$e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x) t^n$$
(31)

Replace t with $e^{i\theta}$

$$e^{i \times \sin \theta} = \sum_{n = -\infty}^{\infty} J_n(x) e^{i n \theta}$$
(32)

Now, what we are asking is if the right side is the Fourier series of the left side on the interval $[0,2\pi]$. Since Fourier series are unique, this last question will be answered affirmatively if the Fourier coefficients of the left side are exactly $J_n(x)$. To check this, we multiply both sides by an exponential and integrate using the orthogonality property

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{ix \sin \theta} e^{-ik \theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{n=-\infty}^{\infty} J_{n}(x) e^{in \theta} e^{-ik \theta} d\theta = \sum_{n=-\infty}^{\infty} J_{n}(x) \left(\frac{1}{2\pi} \int_{0}^{2\pi} e^{in \theta} e^{-ik \theta} d\theta\right) = J_{k}(x) \tag{33}$$

Also observe that by the definition given in part (a) we have

$$\frac{1}{2\pi} \int_0^{2\pi} e^{i \mathbf{x} \operatorname{Sin} \theta} e^{-i \mathbf{k} \theta} d\theta = \mathbf{J}_{\mathbf{k}} (\mathbf{x})$$
(34)

So, the Fourier coefficients agree, and the expression

$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} J_n(x) t^n$$
(35)

is correct.

d)

Take the expression from part (c) and set

$$t = e^{i\theta} \tag{36}$$

We find

$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = e^{\frac{x}{2}\left(e^{i\theta}-e^{-i\theta}\right)} = e^{ix\sin\theta}$$
(37)

So

$$e^{i \times \sin \theta} = \sum_{n = -\infty}^{\infty} J_n(x) e^{i n \theta}$$
(38)

Take the expression from part (c) and set

$$t = i e^{i\theta} \tag{39}$$

We find

$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = e^{\frac{x}{2}\left(i\,e^{i\,\theta}+i\,e^{-i\,\theta}\right)} = e^{i\,x\,\cos\theta} \tag{40}$$

So

$$e^{i \times \cos \theta} = \sum_{n = -\infty}^{\infty} i^{n} J_{n}(x) e^{i n \theta}$$
(41)

$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} J_n(x) t^n$$
(42)

Compute the derivative of this expression with respect to x.

$$\frac{1}{2} \left(t - \frac{1}{t} \right) e^{\frac{x}{2} \left(t - \frac{1}{t} \right)} = \sum_{n=-\infty}^{\infty} J_n'(x) t^n \tag{43}$$

Using the generating function again gives

$$\frac{1}{2} \left(t - \frac{1}{t} \right) \sum_{n = -\infty}^{\infty} J_n(x) t^n = \sum_{n = -\infty}^{\infty} J_n'(x) t^n \tag{44}$$

Rearranging the terms on the left side gives

$$\frac{1}{2} \sum_{n=-\infty}^{\infty} J_n(x) t^{n+1} - \frac{1}{2} \sum_{n=-\infty}^{\infty} J_n(x) t^{n-1}$$
(45)

By shifting the indices this becomes

$$\frac{1}{2} \sum_{n=-\infty}^{\infty} J_{n-1}(x) t^{n} - \frac{1}{2} \sum_{n=-\infty}^{\infty} J_{n+1}(x) t^{n}$$
(46)

So we have

$$\sum_{n=-\infty}^{\infty} (J_{n-1}(x) - J_{n+1}(x)) t^{n} = \sum_{n=-\infty}^{\infty} 2 J_{n}'(x) t^{n}$$
(47)

Now, as in part (a) we could let $t = e^{i\theta}$ and then make the observation that since Fourier series are unique the coefficients of both sides must be the same. This gives

$$J_{n-1} - J_{n+1} = 2J_n'$$
(48)

Problem 3 (6×6 points)

a)

$$\mathbf{u}_{t} = \kappa \left(\frac{1}{r^{2}} \left(\mathbf{r}^{2} \, \mathbf{u}_{r} \right)_{r} + \frac{1}{r^{2} \, \operatorname{Sin} \theta} \left(\operatorname{Sin} \theta \, \mathbf{u}_{\theta} \right)_{\theta} \right) \tag{49}$$

Let $u=R(r)\Xi(\theta)T(t)$ and simplify

$$\frac{\mathrm{T'}}{\mathrm{T}} = \kappa \left(\frac{1}{\mathrm{R} \, \mathrm{r}^2} \, (\mathrm{r}^2 \, \mathrm{R'})' + \frac{1}{\mathrm{r}^2 \, \mathrm{Sin} \, \theta} \, \frac{(\mathrm{Sin} \, \theta \, \Xi')'}{\Xi} \right) \tag{50}$$

Since the left side is a function of t only and the right side is independent of t we have

$$T' - \gamma \kappa T = 0$$

$$\frac{1}{R r^2} (r^2 R')' + \frac{1}{r^2 \sin \theta} \frac{(\sin \theta \Xi')'}{\Xi} = \gamma$$
(51)

Multiplying by r^2 and simplifying gives

$$\frac{1}{\sin \theta} \frac{(\sin \theta \Xi')'}{\Xi} = \gamma r^2 - \frac{1}{R} (r^2 R')'$$
(52)

Since the right side is a function of r and the left side is a function of θ , both sides must be the same constant, call it $-\lambda$.

$$(r^2 R')' - (\lambda + \gamma r^2) R = 0$$

$$\sin \theta (\sin \theta \Xi')' + \lambda \sin^2 \theta \Xi = 0$$
(53)

b)

If we set

$$x = \cos \theta \tag{54}$$

Then we have for any $A(\theta)=B(x(\theta))$

$$\sin \theta \, A_{\theta} = \sin \theta \, B_{x} \, x_{\theta} = -\sin^{2} \theta \, B_{x} = (x^{2} - 1) \, B_{x} \tag{55}$$

Applying this result twice with $\Xi(\theta)=y(x(\theta))$

$$\operatorname{Sin} \theta \left(\operatorname{Sin} \theta \Xi_{\theta} \right)_{\theta} = -\operatorname{Sin}^{2} \theta \left((x^{2} - 1) y_{x} \right)_{x} = \operatorname{Sin}^{2} \theta \left((1 - x^{2}) y_{x} \right)_{y} \tag{56}$$

Plugging this into the ODE gives

$$\sin^2 \theta (((1 - x^2) y_x)_y + \lambda y) = 0$$
(57)

or

$$((1 - x^2) y_x)_x + \lambda y = 0$$
(58)

c)

In general, if we have a generating function

$$g(r, x) = \sum_{n=0}^{\infty} a_n(x) r^n$$
 (59)

Then we can compute k derivatives with respect to r

$$\frac{\partial^{k}}{\partial r^{k}} g(r, x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k!)} a_{n}(x) r^{n-k}$$
(60)

and set r=0

$$\left(\frac{\partial^{k}}{\partial r^{k}} g(r, x)\right)_{r=0} = n! a_{k}(x)$$
(61)

We'll use this trick several times below

i)

$$\frac{1}{\sqrt{1 - 2 r x + r^2}} = \sum_{n=0}^{\infty} P_n(x) r^n$$
 (62)

Set x=1 and compute the k^{th} derivative of both sides with respect to r

$$\frac{k!}{(1-r)^{k+1}} = \frac{d^k}{dr^k} \frac{1}{1-r} = \frac{d^k}{dr^k} \sum_{n=0}^{\infty} P_n(1) r^n = \sum_{n=1}^{\infty} \frac{n!}{(n-k)!} P_n(1) r^{n-k}$$
(63)

Now set r=0

$$k! = k! P_k (1)$$
 (64)

or

$$P_{n}(1) = 1 \tag{65}$$

$$\frac{1}{\sqrt{1 - 2 r x + r^2}} = \sum_{n=0}^{\infty} P_n(x) r^n$$
 (66)

Set x=-1 and compute the k^{th} derivative of both sides with respect to r

$$\frac{(-1)^k k!}{(1+r)^{k+1}} = \frac{d^k}{dr^k} \frac{1}{1+r} = \frac{d^k}{dr^k} \sum_{n=0}^{\infty} P_n (-1) r^n = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} P_n (-1) r^{n-k}$$
(67)

Now set r=0

$$(-1)^k k! = k! P_k (-1)$$
 (68)

or

$$P_{n}(-1) = (-1)^{n} \tag{69}$$

iii)

$$\frac{1}{\sqrt{1-2\,r\,x+r^2}} = \sum_{n=0}^{\infty} P_n(x)\,r^n \tag{70}$$

Set r=0

$$1 = \sum_{n=0}^{\infty} P_n(x) 0^n = P_0(x)$$
 (71)

$$\frac{1}{\sqrt{1 - 2 r x + r^2}} = \sum_{n=0}^{\infty} P_n(x) r^n$$
 (72)

Compute one derivative with respect to r.

$$\frac{x-r}{(1-2rx+r^2)^{3/2}} = \sum_{n=1}^{\infty} n P_n(x) r^{n-1}$$
(73)

Set r=0

$$x = \sum_{n=1}^{\infty} n P_n(x) 0^{n-1} = P_1(x)$$
 (74)

d)

$$\frac{1}{\sqrt{1-2\,r\,x+r^2}} = \sum_{n=0}^{\infty} P_n(x)\,r^n \tag{75}$$

Compute the derivative with respect to r

$$\frac{x-r}{(1-2rx+r^2)^{3/2}} = \sum_{n=1}^{\infty} n P_n(x) r^{n-1}$$
(76)

Using the generating function gives

$$\frac{x-r}{1-2rx+r^2}\sum_{n=0}^{\infty}P_n(x)r^n = \sum_{n=1}^{\infty}nP_n(x)r^{n-1}$$
(77)

Rearranging gives

$$\sum_{n=0}^{\infty} P_n(x) (x-r) r^n = \sum_{n=1}^{\infty} n P_n(x) (1-2 r x + r^2) r^{n-1}$$
(78)

Expand this into separate series

$$\sum_{n=0}^{\infty} x P_n(x) r^n - \sum_{n=0}^{\infty} P_n(x) r^{n+1} = \sum_{n=1}^{\infty} n P_n(x) r^{n-1} - \sum_{n=1}^{\infty} 2 n x P_n(x) r^n + \sum_{n=1}^{\infty} n P_n(x) r^{n+1} = 0$$
 (79)

By shifting indices we combine this into a single series

$$x P_{0}(x) - P_{1}(x) + (3 x P_{1}(x) - 2 P_{2}(x) - P_{0}(x)) r + \sum_{n=2}^{\infty} ((2 n + 1) x P_{n}(x) - (n + 1) P_{n+1}(x) - n P_{n-1}(x)) r^{n}$$
(80)

Taking k derivatives with respect to r and setting r=0 gives:

$$(2 n + 1) x P_k(x) - (k + 1) P_{k+1}(x) - k P_{k-1}(x) = 0$$
(81)

or

$$(n+1)P_{n+1} = (2n+1)xP_n - nP_{n-1}$$
(82)

Setting n=1 gives

$$P_2 = \frac{1}{2} (3 \times P_1 - P_0) = \frac{1}{2} (3 \times P_0 - P_0) = \frac{1}{2} (3$$

e)

$$P_{n}(x) = \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n}$$
(84)

Since Rodrigue's formula tells us to differentiate n times a polynomial of degree 2n the resulting polynomial, after differentiation, will be of degree n.

We can show the orthogonality relation by integrating and using Rodrigues formula:

$$\int_{-1}^{1} P_{n}(x) P_{m}(x) dx = \frac{1}{2^{n} n!} \frac{1}{2^{m} m!} \int_{-1}^{1} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} \frac{d^{m}}{dx^{m}} (x^{2} - 1)^{m} dx$$
 (85)

This integral is of the form

$$\int_{-1}^{1} u^{(n)}(x) v^{(m)}(x) dx \tag{86}$$

By integrating by parts n times we get

$$\sum_{k=1}^{n} (-1)^{k+1} v^{(m+k-1)} (1) u^{(n-k)} (1) + \sum_{k=1}^{n} (-1)^{k+1} v^{(m+k-1)} (-1) u^{(n-k)} (-1) + (-1)^{n} \int_{-1}^{1} u(x) v^{(m+n)} (x) dx$$
 (87)

Notice that

$$\left(\frac{d^{r}}{dx^{r}}(x^{2}-1)^{n}\right)_{x=1} = \left(\frac{d^{r}}{dx^{r}}(x^{2}-1)^{n}\right)_{x=-1} = 0 \text{ for } 0 \le r < n$$
(88)

For this reason

$$\mathbf{u}^{(n-k)}(1) = \mathbf{u}^{(n-k)}(-1) = 0 \text{ for } k \in \{1, ..., n\}$$
(89)

and so all the boundary terms vanish. We have

$$\int_{-1}^{1} u^{(n)}(x) v^{(m)}(x) dx = (-1)^{n} \int_{-1}^{1} u(x) v^{(m+n)}(x) dx$$
(90)

(i) Suppose n>m

v is a (2m)th degree polynomial so the (m+n)th derivative of v is 0 since n>m. This means that the integral on the right is zero. Hence P_n is orthogonal to P_m for n>m. By symmetry this result also holds for n<m.

(ii) Suppose n=m

We have

$$\int_{-1}^{1} P_{n}(x) P_{n}(x) dx = \frac{1}{(2^{n} n!)^{2}} \int_{-1}^{1} (u^{(n)})^{2} dx$$
(91)

From the integration by parts procedure just used we write this as

$$\frac{(-1)^{n}}{(2^{n} n!)^{2}} \int_{-1}^{1} \mathbf{u}(\mathbf{x}) \, \mathbf{u}^{(2 \, n)}(\mathbf{x}) \, d\mathbf{x} = \frac{(-1)^{n} (2 \, n)!}{(2^{n} n!)^{2}} \int_{-1}^{1} (\mathbf{x}^{2} - 1)^{n} \, d\mathbf{x}$$
(92)

This last integral can be looked up in a table

$$\int_{-1}^{1} (x^2 - 1)^n dx = \frac{(-1)^n 2^{2n+1} (n!)^2}{(2n+1)!}$$
(93)

Inserting this into the integral expression gives

$$\int_{-1}^{1} P_{n}(x) P_{n}(x) dx = \frac{(-1)^{n} (2 n)!}{(2^{n} n!)^{2}} \frac{(-1)^{n} 2^{2 n+1} (n!)^{2}}{(2 n+1)!} = \frac{2}{2 n+1}$$
(94)

So we conclude

$$\int_{-1}^{1} P_{n}(x) P_{m}(x) dx = \frac{2}{2n+1} \delta_{m,n}$$
(95)

f)

$$I = \int_{-1}^{1} x P_n(x) P_m(x) dx$$
 (96)

From the recursive relation of part (d) we may rewrite this as

$$I = \int_{-1}^{1} \left(\frac{n+1}{2n+1} P_{n+1}(x) + \frac{n}{2n+1} P_{n-1}(x) \right) P_{m}(x) dx =$$

$$\frac{n+1}{2n+1} \int_{-1}^{1} P_{n+1}(x) P_{m}(x) dx + \frac{n}{2n+1} \int_{-1}^{1} P_{n-1}(x) P_{m}(x) dx$$
(97)

Using the result of part (e) these two integrals are easily found

$$\frac{n+1}{2n+1} \frac{2}{2(n+1)+1} \delta_{m,n+1} + \frac{n}{2n+1} \frac{2}{2(n-1)+1} \delta_{m,n-1}$$
(98)

Simplifying gives the desired result

$$I = \frac{2(n+1)}{(2n+1)(2n+3)} \delta_{m,n+1} + \frac{2n}{(2n+1)(2n-1)} \delta_{m,n-1}$$
(99)