ACM95/100b
Problem Set 8 Solutions
03/1904

Problem 1 (10 points)

y' '+ A%y =f(x)
y@©=0 (1)
y'@=1

Method 1

From the class notes of 3/5/04 we know that the solution of

Ly =f
Biy=d; (2)
Boy=0d;

will be of the form

y=Y1+Y2 3
wherey; solves Ly=0 with inhomogeneous boundary conditions wndolves Ly=f with homogeneous boundary condi-
tions. What's left is to find these solutions and plug into the formulavill solve

y"+A2y=0
y(©=0 (@)
ydh=1

This ODE has a general solution of the form

y =AM 4 Be X (5)
The boundary conditions give

A+B=0
iAM(Ae* —Be M) =1 (6)
The solution to this is

-1
A= 2ACosA
B I
~ 22CosA

(7)

So

Sin(A x)
A CosA
Now, y, will solve

(8)

Y1 =

y' +A2y=f
y(@©) =0 ©))
y'(1)=0

We found the solution to this last week using Green's functions. So the solution is
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1
= | f&G d
y j; @ GKXx|§HdE

—Cos(A (¢-1)) Sin(A x)
_ ACosA O0=x< f

T —Cos(A(x-1)) Sin(A &)
A CosA f <x=1

So the solution to the inhomogeneous problem with inhomogeneous boundary conditions is

_Sin@x)  CosAQx-1) (™. aiinmg NAX s - 1 d

~ ACosL  ACos j; ©SinAHds - ACOS&f (&) Cos(A (¢ - 1)) dé
Method 2

y A%y =f(x)

y (0 =

y@®h=1

Make the change of dependent variable

Z=y+ax+b
This new variable satisfies

z"+22z=f(x)+A%(@x+h)
z(0O)=b
z'’D=1+a

choose b=0, a=-1 and define the new function g(x)=t&%)-

2"+ 22 z=9(X)
z(0)=0
z'(1)=0
We found the solution to this last week using Green's functions. The solution is

1
= G d
2 fog(f) (x| &) dé

—Cos(A (¢-1)) Sin(A x)
_ A CosA O0=x< f
T —Cos(A(x-1)) Sin(A &)
A CosA f <x=1

So the solution to the inhomogeneous problem with inhomogeneous boundary conditions is

Cos(A(x—1))

% . Sin(Ax)
y=X—-——r—— f g SinAé)dé -
0

A CosA

1
A Cosa j; g(¢) Cos(A (& -1)d¢

Problem 2 (5x%7 points)

a)

1 21
- i(x Sin6—nd) do
% 2n j(; ¢

Xy +xy' + (% -n?)y=0

Compute derivatives
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(10

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)



: 27
y'= Lf Sing &' xS g
21 Jy

(19
-1 271
yll - = f SmZ ees‘(xSinﬁ—nﬁ) da
21 Jy
Plug in
1 21 ) )
Xy + Xy + (X% —nd)y = o f (=X? Sirf 6+ i X Sind + X2 — n?) ' *Sn-" gg (20)
0
Using a trig identity we may rewrite the integrand
1 % -
S (X2 Cog 0 + i X Sinf — n?) ¢ *Sn-m) g¢ (21)
2w Jo
Following the hint, we set
1 i (X Sin6—nd)
u= — ¢ (22)
2n
and calculate
1 o
—Ug —2iNUy = o (x? Cost? + i x Sinf — n?) ¢ *SN-1) (23)
This last expression is simply the integrand we found above. So we have
27
Xy + Xy + (X% —nd)y = (~Ugp —2iNWy) d =
0 (24)
Uy ()= Uy @)+ 2in(U(0) —u@m) = XKW FXZD) +2in| 11 )=0
p (0) —Up (2m) +2in(U(0) —u(27) = n n IM57 ~557)°
b)
1 27
JQ(O)=—f do=1 (25)
21 Jy
1 27 ) 1 e—i n2r e—inO 1 1 1
o- L —znﬁdz_( _ )z_ _ -0 26
+ © erj; ¢ o 27\ —in —in Zn(—in —in) (26)
1 21 )
J'(0) = —f iSinge % 4o (27)
2n Jo
Breaking the complex exponential into it's real and imaginary parts gives
27 1 2
— Sing Cos# df + — Sif0dg=1/2 (28)
27 Jy 21 Jo
1 2 )
Jh'(0)= — f iSinge™™ d6 (29)
2n Jo
Breaking the complex exponential into it's real and imaginary parts gives
1 27 1 21
—f i SinfCos(nd)dd + — f Singd Sin(nd) do (30)
27 Jy 21 Jy

By the orthogonality properties of Sine and Cosine we know that both of these integrals vanish#st. all n
c)
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Is the following true?

et = 3 3 00t (31)

n=—co

Replace t withe'?

oiXsing _ Z J, (%) ein? (32)
Nn=—o00
Now, what we are asking is if the right side is the Fourier series of the left side on the intemjal $in2e Fourier series
are unique, this last question will be answered affirmatively if the Fourier coefficients of the left side areJggactijo
check this, we multiply both sides by an exponential and integrate using the orthogonality property

i 2”€ixSin9 e—ik(? dez
21 Jy
1 21 *® oo 1 21 (33)
= X ing —ikﬁdez X _f ing —ikﬁde — X
erfo e w5y [ e 3 %0
Also observe that by the definition given in part (a) we have
1 o A
= esxSmﬁ e—xkﬁ do = Jk (X) (34)
21 Jy
So, the Fourier coefficients agree, and the expression
s 7)) = Z Jr 001" (35)
N=—00
is correct.
d)
Take the expression from part (c) and set
t=e'f (36)
We find
eg(t—%) _ o7 (@) _ ,ixSing (37)
So
piXSine _ Z Jy (%) eint (38)
Nn=—o0
Take the expression from part (c) and set
t=ie'’ (39)
We find
o3 (-F) = p% e+ie™) _ ixCoso (40)
So
eiXCOSﬁ - Z E-n Jn (X) einﬁ (41)

n=—co
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e)

Nl

Z 5ot (42)

n=—co

Compute the derivative of this expression with respect to x.

%(t_T)ez -7) ZJ x)t" (43)

n=—c

Using the generating function again gives

%(t— %) i IOt = i 3ot (44)

n=—o n=—o

Rearranging the terms on the left side gives

1 1
3 D2 =5 S R0t (45)

n=—c0 n=—c0

By shifting the indices this becomes

1 00

3 Z J1 OOt = = Z Je1 OO (46)
So we have

D G 0=dua G = > 23 00t" (47)

Now, as in part (a) we could let #¢ and then make the observation that since Fourier series are unique the coefficients of
both sides must be the same. This gives

Iha1=dhi1=23" (48)
Problem 3 (6x6 points)
a)

Uy —/<(i P u), + 5—=— 1 (Slné) ug)g) (49)

Let u=R(rE(0)T(t) and S|mpI|fy

T 1, 1 (SingEY"
R " 50
T K( 7 R)+r28in6) B ) 50)
Since the left side is a function of t only and the right side is independent of t we have
T -yxkT=0
1 2Rys L _ (SnOEY (51)
R r2 Sing g R
Multiplying by r? and simplifying gives
1 (Sinog’ , 1
- == i ' 52
Sing  E TR R 52)

Since the right side is a function of r and the left side is a functiénbafth sides must be the same constant, call it -
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(PRY-QA+yr’)R=0
Sing(SINGE"' +ASIFHE=0
b)

If we set

x = Cosé
Then we have for any B=B(x(6))

Sing Ay = Sind By Xy = —Sir? 8By = (X% — 1) By
Applying this result twice wittE(6)=y(x(0))

Sing (SiNBEy), = —Sir’ 6((x* — 1) yx), = Sirf 8((1 - x%) yx),
Plugging this into the ODE gives

SIP 0((1-x?)yx), +Ay)=0

or

(L-x*)yy), +1y =0
c)

In general, if we have a generating function

g0 = > a (r"
n=0

Then we can compute k derivatives with respect to r

* SNl K
iy X)=§ o oo
and set r=0

8k
—g(r, X =n! X
(mk g( )),zo a ()
We'll use this trick several times below

i)

l ©o
—_— =ZPn(x)r”
V1-2rx+r2 3

Set x=1 and compute th& derivative of both sides with respect to r

00

k! dk 1 dk & n!
—— = ———=— Y Ph()r"= Y ——— P, (¥
(L-nkt drk 11 drk ; n @) Z(n—k)! n (D

n=1
Now set r=0
k!=k!P (1)
or
Ph(1)=1
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(53

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)



i)

\/1 2rx+r2 ZP eor

Set x=-1 and compute th& derivative of both sides with respect to r

C n _ n! n—k
;H, -1 _Zé an -1

-k  dx 1 dx

L+t dark Tar  drx

Now set r=0

(-D)¥k1=Kk! P (1)

or
Pa (-1 =(-D"
iii)
1 [ee]
— Z Py () 1"
V1-2rx+r2 13
Set r=0

1= P (00" =Py (%)
n=0

l 00

V1-2rx+r2 nzztl)

P, )"

Compute one derivative with respect to r.

1
—(1 2rx+r2)3/2 ann ) -

Set r=0

X = Z nPk, (x)0" ! =P; (%)

d)

\/1 2rx+r2 ZPH(X)r

Compute the derivative with respect to r

1
rer LTl

Using the generating function gives

X_r [ee] [ee]
— MY P r”:ZlnPn ot
o L
1-2rx+r e e

Rearranging gives
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(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)



Z:Pn(x)(x—r)r”=Z:nPn(x)(l—2rx+r2)r”‘1 (78
n=0 n=1
Expand this into separate series
ZXPn x) M —ZPn )Mt = Zn Py (x) "t —lenxPn x) M +Zn P, ()"t =0 (79)
n=0 n=0 n=1 n=1 n=1
By shifting indices we combine this into a single series
XPo (X) = Pr(X)+ BXP1(X) = 2P, (X) = Po (X)) r +
D (@n+1)XPy 00 = (N+ 1) Payg (0 =N Pyy 01" (89)
n=2
Taking k derivatives with respect to r and setting r=0 gives:
Cn+HxPX)—(K+1)Pe1 X)— kP (x)=0 (81)
or
N+DPyp1=@2n+1)xPy—nPkPy; (82)
Setting n=1 gives
1 1.,
P2 =5 BxPL-Py)= 23X - 1) (83)
e)
n n
Pa (¥) = x* -1 (84)

2"n! dxn
Since Rodrigue's formula tells us to differentiate n times a polynomial of degree 2n the resulting polynomial, after-differenti
ation, will be of degree n.

We can show the orthogonality relation by integrating and using Rodrigues formula:

flp (X) Pm (X) dX = 1 1 fl T e 1" T 1" ax (85)
a0 )P COdX= 5t _1dx“( ) i ( )

This integral is of the form

1
f u™ (x) v™ (x) d x (86)

1
By integrating by parts n times we get

n n 1
D DRI @)y (1) 4 3 (DR () U (-1 + (1) f uEV™? () dx  (87)
k=1 k=1 -1

Notice that
a ., n a -, n
(dxf xc =1 )X=1 = ( I xc =1 )x=—1 =0forO<r<n (88)
For this reason
U™ () =u" 0 (-1)=0forke{l, ... n (89)

and so all the boundary terms vanish. We have
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1 1
f u™ x) v™ (x) dx = (-1)" f u () V™™ (x) d x (90
-1 -1

(i) Suppose n>m

v is a (2m)th degree polynomial so the (m+n)th derivative of v is 0 since n>m. This means that the integral on the right is
zero. Hencé, is orthogonal td®,, for n>m. By symmetry this result also holds for n<m.

(i) Suppose n=m

We have

1 1 1 o 2
IPn (X) Py (X)dx = @ ni? j:l(u ) dX (91)

1

From the integration by parts procedure just used we write this as

=" ! @n) D" 2!
o n? Ilu(x)u X)dx = —————~ oy f x2-1)" dx (92)
This last integral can be looked up in a table
1 n ~52n+1 2
2 a0 g (D" 22M ()
j:l(x 1) dx= Zni D! (93)

Inserting this into the integral expression gives

1 n n 92n+l 2
=1 @2n)! (-1)" 22™L(ny) 2
P, P, dx = = 94
»[:1 h (X) P (X) d X (2”n!)2 2n+ ! nel (94)
So we conclude
1 2
»[:1 P (X) P (X) dX = m 5m,n (95)
f)
1
sz X P, (X) Py, (X) dX (96)
-1
From the recursive relation of part (d) we may rewrite this as
| = 1(nlp B ) Pn ) dx =
—f 5o Prt 00+ 5= Pt 00) P ()
(97)
n+1 flP X) P X)dXx + flP (X) Py (X) d X
2n+1 ), M 2n+1 ), T
Using the result of part (e) these two integrals are easily found
n+1 2 s N n 2 5 98
2n+1 2N+ +1 ™™ ony1 2(n-p+1 ™™t (98)
Simplifying gives the desired result
_ 2(n+1) N 2n s 99
T @n+1)@2n+3) ™7 2n+1pn@n-1 ™™t (99)
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