
Problem Set 8 #4 Solution
Solution to PS8 Extra credit #4 E. Sterl Phinney
ACM95b/100b 12 Mar 2004

4. (7× 3 points extra credit) Bessel Functions and FM radios

FM (Frequency Modulated) radio works by encoding an audio signal m(t) (air pressure as a
function of time) as frequency modulation of a radio wave about a carrier frequency fc.

We consider the case when the audio signal is a pure tone of frequency fM , so

SFM (t) = Ac cos(2πfct + βf sin(2πfM t)) (1)

βf is known as the “frequency modulation index”.

(a) Show that J−n(x) = Jn(−x) = (−1)nJn(x).
There are many ways to show this, e.g.(i) direct inspection of the power series for the
finite at x = 0 solutions to Bessel’s differential equation (Prob 2a eq 3), (ii) noticing
that Bessel’s differential equation is invariant under parity x → −x and under n → −n
and then using the initial conditions (Prob 2b eq 5) to show that J0 is even, J1 is odd,
and then the recursion (Prob 2e, eq 8) to show that J2n is even, J2n+1 is odd, and (iii)
changing signs of x and n and the limits of integration of the integral representation
(Prob 2a, eq 2).
Here we show this by (iv) using the generating function of Problem 2c, eq 6:
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Jn(x)tn (2)

In eq (2), replace x by −x and t by 1/t (if this is confusing, let x = −ξ and t = 1/τ
in eq (2), and then rename ξ = x and τ = t). The left hand side is unaffected by these
changes, so (using a new dummy index m for the sum)
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Now replace the dummy index in eq (3) by m = −n. Since the left hand side is the same
as that of eq (2), we have

∞∑
n=−∞

Jn(x)tn =
∞∑

n=−∞
J−n(−x)tn (4)

Since power series are unique, equating the coefficients of tn gives the first of the desired
equalities Jn(x) = J−n(−x) .

To prove the second equality, return to eq (2), and this time replace x by −x and t by
−t. Again the left hand side is unaffected by this change,
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Again using the fact that power series are unique, we equate the coefficients of tn on the
right sides of equations (2) and (5) , we get Jn(x) = (−1)nJn(−x). Multiplying both
sides by (−1)n gives the desired equality: Jn(−x) = (−1)nJn(x) .

(b) Show that the Fourier transform of SFM (t) given by eq (1) is

S̃FM = Ac/2
∞∑

n=−∞
Jn(βf ) (δ(f − [fc + nfM ]) + δ(f + [fc + nfM ])) (6)

Write eq (1) as

SFM (t) = Re Ace
i2πfcteiβf sin(2πfM t) (7)

= Re Ace
i2πfct

∞∑
n=−∞

Jn(βf )ein2πfM t , (8)

=
Ac

2

∞∑
n=−∞

Jn(βf )
[
ei2πt(fc+nfM ) + e−i2πt(fc+nfM )

]
(9)

where the second equality follows from the first by substituting eq 7 of Problem 2d, and
the third equality follows from the second by the fact that Re (z) = (1/2)(z + z∗).
The Fourier transform is defined by

S̃FM (f) =
∫ ∞
−∞

e−i2πftSFM (t) dt (10)

Insert eq (9) into eq (10):

S̃FM (f) =
Ac

2

∞∑
n=−∞

Jn(βf )
∫ ∞
−∞

[
ei2πt(fc+nfM−f) + e−i2πt(f+fc+nfM )

]
(11)

Recall that ∫ ∞
−∞

ei2πf(t−τ) df = δ(t− τ) = δ(τ − t) (12)

to identify the integrals of the two terms in square brackets as delta functions. This
gives the desired result,

S̃FM = Ac/2
∞∑

n=−∞
Jn(βf ) (δ(f − [fc + nfM ]) + δ(f + [fc + nfM ])) . (13)

(c) Plot the amplitudes of the first 10 sidebands (i.e. for n = 0, 1, . . . , 10) for βf = 0.3,
βF = 3 and βf = 7. Notice that the number of sidebands with significant amplitude is
approximately βf + 1, as one might have intuited (without the +1) from equation (21)
of the PS4’s problem statement.
See Figures 1-3.

(d) Show that

1 =
∞∑

n=−∞
Jn(x)2 = J2

0 (x) + 2
∞∑

n=1

J2
n(x) . (14)
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Figure 1: Jn(βf ) versus n for βf = 0.3
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Figure 2: Jn(βf ) versus n for βf = 3
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Figure 3: Jn(βf ) versus n for βf = 7



From eq (7) of problem 2d,

eix sin θ =
∞∑

n=−∞
Jn(x)einθ (15)

Replacing x by −x in eq (15) gives

e−ix sin θ =
∞∑

n=−∞
Jn(−x)einθ =

∞∑
n=−∞

J−n(x)einθ =
∞∑

m=−∞
Jm(x)e−imθ (16)

where the second equality follows from Problem 4a, and the third equality just replaces
the dummy index n = −m.
Multiply equations (15) and (16) together to get

1 =
∞∑

n=−∞

∞∑
m=−∞

Jn(x)Jm(x)ei(n−m)θ (17)

Integrate both sides of eq (17) over θ from θ = 0 to θ = 2π, and divide by 2π:

1 =
∞∑

n=−∞

∞∑
m=−∞

Jn(x)Jm(x)
1
2π

∫ 2π

0
ei(n−m)θ dθ (18)

=
∞∑

n=−∞

∞∑
m=−∞

Jn(x)Jm(x)δnm (19)

=
∞∑

n=−∞
J2

n(x) (20)

To get the second form stated, write

∞∑
n=−∞

J2
n(x) = J2

0 +
∞∑

n=1

J2
n(x) +

−∞∑
n=−1

J2
n(x) (21)

and notice that

−∞∑
n=−1

J2
n(x) =

∞∑
n=1

J2
−n(x) =

∞∑
n=1

(−1)2nJ2
n(x) =

∞∑
n=1

J2
n(x) (22)

where in the second equality we replaced the dummy index n by −n, and in the third
equality we used the result of part (a): J−n(x) = (−1)nJn(x).

(e) Show that the power radiated, averaged over some very long time 2T , (1/2T )
∫ T
−T S2

FMdt =
A2

c/2. And show that this is equal to 2 times the sums of squares of the amplitudes of
the sidebands.



Square eq (1) and use cos2 θ = 1/2 + (1/2) cos 2θ:

S2
FM (t) =

A2
c

2
(1 + cos[4πfct + 2βf sin(2πfM t)]) (23)

=
A2

c

2
+

A2
c

2
Re ei[4πfct+2βf sin(2πfM t)] (24)

=
A2

c

2
+

A2
c

2
Re ei4πfct

∞∑
n=−∞

Jn(2βf )ei n2πfM t (25)

=
A2

c

2

(
1 +

∞∑
n=−∞

Jn(2βf ) cos[2π(2fc + nfM )t]

)
(26)

where in the third equality we have used equation (15) [eq 7 of problem 2d]. Integrating
eq (26) over time from t = −T to t = T and dividing by 2T gives:
Case 1: Provided 2fc is not a multiple of fM , so 2fc + nfM 6= 0 for any n,

1
2T

∫ T

−T
S2

FM (t) dt =
A2

c

2

(
1 +

1
2T

∞∑
n=−∞

Jn(2βf )
2 sin(2π(2fc + nfM )T )

2π(2fc + nfM )

)
. (27)

It can be shown that for n � x

Jn(x) ∼ 1√
2πn

( ex

2n

)n
. (28)

Therefore the sum in eq (27) is extremely rapidly convergent to a finite value. Thus as
T →∞, we recover the claimed result:

1
2T

∫ T

−T
S2

FM (t) dt =
A2

c

2
(29)

The fact that this is equal to 2 times the sums of squares of the amplitudes of the
sidebands follows immediately from the solution to part d, equation (14) above.
Case 2: [Discovered numerically by Dave Goulet]
In the singular case when 2fc is an integer multiple M of fM , the term for n =
−M ≡ −2fc/fM in the sum in eq (27) should be replaced by 2TJ−M (2βf ), since the
cosine of that term in eq (26) is then equal to one. As in case 1, all the other terms give
a rapidly convergent finite sum, which vanishes when divided by 2T →∞, and we get

1
2T

∫ T

−T
S2

FM (t) dt =
A2

c

2
[1 + J−M (2βf )] (30)

Does this extra term make the stated problem wrong? No, if you are a physicist or
engineer. Maybe, if you are a mathematician. Here is why: If we pick acoustic frequen-
cies at random, only for a set of measure zero will 2fc/fM be an integer. Real radio
stations do not play pure tones of infinite duration (e.g. year-long tests of the emer-
gency broadcasting service). With a continuous frequency spectrum, the measure-zero
set values of fM that give integer 2fc/fM contribute nothing to the average power, and
eq (29) holds. The Fourier transform of a pure tone of finite duration δt has a continuous



spectrum with a bandwidth δf ∼ 1/δt, so this holds even if the radio station plays pure
tones occasionally. It is also worth noting that for FM radio 88 MHz < f < 108 MHz,
fM < 10 kHz, and βf ∼ 10 (see below), so even for a station that played nothing but a
pure tone locked to an atomic clock and tuned to be an integer fraction of a carrier fre-
quency locked to the same atomic clock, the correction term in eq (30) has a maximum
numerical value ∼ J−10000(10) ' 10−29,000 which is a really good approximation to zero!

(f) CD quality music is sampled at 44.1kHz, so encodes frequencies up to 22kHz. Bad-
sounding telephone and AM radio encodes only up to 3kHz. FM radio is intermediate in
quality, so suppose it encodes frequencies up to 10kHz. We want to choose the constant
k in equation (19) of the problem statement, and hence βf as large as possible so as
to maximise the dynamic range of music we can encode even when the radio signal is
weak (i.e. we can measure the amplitudes of the various sidebands only with relatively
poor accuracy). Show that for fM = 10kHz, you have to choose βf < 8.6 to ensure
that less than 0.005 of the signal power leaks into the adjoining FM radio channels
(whose sidebands start at ±100kHz from the center channel: remember the stations are
separated by 200kHz).
Since the adjacent channels start at 100 kHz from the center, with fM = 10 kHz, leakage
will occur for |n| > 10. So we want the total power in harmonics with n > 10 or n < −10
to be less than 0.005 of the total defined by eq (14), i.e. (1−

∑10
−10 J2

n(βf ) < 0.005. From
Figure 4, we see that this requires βf < 8.62 . This limits the amplitude with which we
can frequency modulate the signal: the peak frequency deviation can only be 86.2 kHz,
not the full 100 kHz of the band.

(g) Show that for a 3.33kHz signal encoded with the same βf = 8.6, the fraction of the signal
power leaking into the next FM radio channel is only 2× 10−29. Thus the owners of FM
radio channels can trade between high dynamic range at low (talk show) frequencies, or
lower dynamic range at high frequencies (instrument harmonics on music stations).
Since the adjacent channels start at 100 kHz from the center, with fM = 3.33 kHz,
leakage will now occur for n > 100kHz/3.33kHz=30. So we want the total power in
harmonics with n > 30 or n < −30.
It is dangerous to evaluate this as (1 −

∑30
−30 J2

n(βf )), because the sum is so close
to one that it cannot be represented in double precision, so doing the calculation (e.g.
in matlab or other ordinary floating point languages) produces pure roundoff error
(∼ 10−16 for double precision on 32-bit processors). Maple can still do the calculation
this way accurately if one requests e.g. Digits := 40.
But a much smarter way to do the calculation, which avoids the problem of roundoff in-

troduced by subtracting two nearly equal numbers, is to write 1−
30∑
−30

J2
n(βf ) = 2

∞∑
n=31

J2
n(βf )

and to recognise that the Jn are so rapidly getting tiny (2J2
31(8.62) = 2 × 10−29,

2J2
32(8.62) = 4 × 10−31, 2J2

33(8.62) = 7 × 10−33, cf. eq (28)) that only the first one

or two terms are required to deduce the answer: 1−
30∑
−30

J2
n(8.62) = 2.03× 10−29

You can check that βf < 28 is all that is required to keep this 3.33 kHz modulation fre-
quency from having sidebands with more than 0.005 power outside the stations ±100 kHz
band. This corresponds to a peak frequency deviation of 93 kHz, closer to the 100 kHz
boundary than for the 10 kHz modulation frequency of the previous part.
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Figure 4: (1−
∑10
−10 J2

n(βf ))− 0.005 versus βf . Zero crossing (0.005 total power in sidebands with
|n| > 10, i.e. outside allocated ±100 kHz station frequency band) is at βf = 8.62.


