
Problem Set 8
Mar 5, 2004 Due Mar 10, 2004
ACM 95b/100b 3pm at Firestone 303
E. Sterl Phinney (2 pts) Include grading section number

Useful Readings: For Green’s functions, see class notes and refs on PS7 (esp Carrier and Pearson
section 7.4 and 3/5/04 class notes). Bessel functions and Legendre functions: Arfken Chapters 11
and 12, Carrier and Pearson Chapter 11. Hassani is not quite so useful as Arfken on this topic, but
Chapter 12 and sections 15.3, 7.3, 7.4 and 7.6 come closest.

1. (10 points) Consider the same DE as in PS7, #4, but modify the upper boundary condition
to be inhomogeneous: y′(1) = 1 (so that the problem is no longer of Sturm-Liouville form),
i.e. consider

d2y

dx2
+ λ2y = f(x), y(0) = 0, y′(1) = 1 (1)

Still assuming λ is not an eigenvalue of the homogenous problem (PS7, #4), give the solution
to eq (1) in terms of the Green’s function you found in PS7 #4b. [hint: You can do this in
two ways. One was given in class 3/5/04. Another is to let y = h(x) + q(x) where q(x) is
chosen so that h satisfies an ODE like eq (1) with homogeneous boundary conditions, but a
modified f(x).]

In addition to Taylor series representations of the solutions of ordinary differential equations
which you have already encountered, there are three very useful alternative ways of repre-
senting solutions: integral representations, generating functions and recursion relations.

The problems below introduce you to the power of these types of representation for the
solutions of Bessel’s equation (which arose in PS6 # 3 when you separated ∇2 in cylindrical
polar coordinates) and Legendre’s equation (which arose in PS6 #2c when you separated ∇2

in spherical polar coordinates, with x = cos θ).

In solving all these problems you may assume (as can be proven) that all the integrals and
infinite sums that appear are sufficiently convergent that it is allowed to interchange differ-
entiation, integration and summation at will.

2. (5× 7 points)

a) Show that

Jn(x) =
1
2π

∫ 2π

0
cos[x sin θ − nθ] dθ =

1
2π

∫ 2π

0
exp[i(x sin θ − nθ)] dθ (2)

is a solution1 of Bessel’s equation of order n:

x2y′′ + xy′ + (x2 − n2)y = 0 (3)

where primes indicate differentiation with respect to x. [hint: one step along the way
should be to show that if u(x, θ) ≡ (1/2π) exp[i(x sin θ−nθ)], and y(x) =

∫ 2π
0 u dθ, then

x2y′′ + xy′ + (x2 − n2)y =
∫ 2π

0

[
−d2u

dθ2
− i2n

du

dθ

]
dθ ] (4)

1This is the integral representation of the Bessel functions. You already encountered the n = 0 case in PS7 #5.



b) Show that for integer n ≥ 0 the functions defined by eq (2) have the following initial
conditions at the singular point x = 0 of Bessel’s equation:

J0(0) = 1; Jn(0) = 0 for n 6= 0; J ′1(0) = 1/2; J ′n(0) = 0 for n 6= 1 (5)

c) Show that2

exp
[
x

2

(
t− 1

t

)]
=

∞∑
n=−∞

Jn(x)tn (6)

[hint: work backwards: assume this is true, let t = exp(iθ), and use orthogonality of
exp[imθ] on [0, 2π] to evaluate the terms of the resulting Fourier series and recover
eq (2).]

d) Show that3

eix sin θ =
∞∑

n=−∞
Jn(x)einθ, eix cos θ =

∞∑
n=−∞

inJn(x)einθ . (7)

[hint: see part (c)]

e) Show that4

Jn−1(x)− Jn+1(x) = 2J ′n(x) (8)

[hint: take ∂/∂x of the generating function equation eq (6), replace the remaining expo-
nential by the right hand side, and equate the coefficients of like powers [why?] on both
sides.]

3. (6× 6 points)

a) Show that if there is no φ dependence, the equation for Θ(θ) that you found by separation
of variables in PS6,#2c reduces to

sin θ
d

dθ

(
sin θ

dΘ(θ)
dθ

)
+ λ sin2 θ Θ(θ) = 0 , (9)

where λ is the separation constant.

b) Show that if you let x = cos θ, and y(x) = Θ(θ), this equation becomes

d

dx

[
(1− x2)

dy

dx

]
+ λy = 0 (10)

This equation is of Sturm-Liouville form, and has regular singularities at x = 1, x = −1.
It can be shown that there exist solutions that are finite at both x = 1 and x = −1 if
and only if λ = n(n + 1) for positive integer n. Equation (10) is then called Legendre’s
equation of order n5.

2This is the generating function for the Bessel functions.
3These equations are central to quantum scattering theory, diffractive optics (the expansion of plane waves), the

theory of planetary perturbations and tides (periodic perturbations in a rotating frame), the theory of gravitational
wave detection, and the theory of FM radio. Bessel functions can arise in situations having nothing to do with the
separation of ∇2 in cylindrical coordinates!

4This is one of the many recursion relations for Bessel functions, useful in numerically computing them, and
evaluating their integrals.

5This and the related ‘associated Legendre equation’ [separation of PS6,#2c, keeping the ϕ dependence, expanded
in exp(imϕ)] arises in quantum mechanics and chemistry [remember those s,p,d,f orbitals? They are n = 0, 1, 2, 3],
spectroscopy, potential theory of electromagnetism and planets, theory of radiation of sound, elastic waves [e.g.
earthquakes], electromagnetic waves and gravitational waves.



c) The solutions of Legendre’s equation of order n which are finite at x = ±1 are called
the Legendre polynomials (which we already introduced in lecture as the orthogonal
polynomials of weight 1 on [-1,1] —cf PS5 #1,#3). It can be shown that they have the
generating function

g(r, x) =
1√

1− 2rx + r2
=

∞∑
n=0

Pn(x)rn (11)

for |r| < 1. Use this to show that

i. Pn(1) = 1
ii. Pn(−1) = (−1)n

iii. P0(x) = 1, P1(x) = x

d) Equate terms in the expansion of (1− 2xr + r2)∂/∂r of eq (11) to derive the recurrence
relation (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) for n ≥ 1. Use this to find P2(x).

e) It can be shown that another way to represent the Legendre functions is through Ro-
drigues’ formula:

Pn(x) =
1

2nn!

(
d

dx

)n

(x2 − 1)n (12)

Show that for integer n, this is a polynomial of order n (and hence is finite at x = ±1,
as desired), and show that the Legendre polynomials are orthogonal:∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δm,n (13)

[hint: integrate by parts. At some point you should encounter

(−1)n

∫ 1

−1
(x2−1)n dx = 2

∫ 1

0
(1−x2)n dx = 22n+1Beta(n+1, n+1) = 22n+1(n!)2/(2n+1)!]

(14)

f) In predicting the rate at which atoms will absorb or emit radiation in jumping between
two quantum states with respective angular quantum numbers n and m, the following
integral arises:

I =
∫ 1

−1
xPn(x)Pm(x) dx (15)

Show that6

I =
2(n + 1)

(2n + 1)(2n + 3)
δm,n+1 +

2n

(2n + 1)(2n− 1)
δm,n−1 (16)

[hint: use the results of the previous two parts]

4. (7×3 points extra credit) Bessel Functions and FM radios (Maple, Mathematica or other
computer numerics/graphics needed)

6This is an example of what in quantum mechanics is called a ‘selection rule’: the deltas in the integral show that
there can be no strong (electric dipole) coupling between two energy levels unless the difference between their angular
momenta is exactly one h̄ unit.



FM (Frequency Modulated) radio works by encoding an audio signal m(t) (air pressure as a
function of time) as frequency modulation of a radio wave about a carrier frequency fc [fc is
the frequency to which you ‘set your FM dial’]:

SFM (t) = Ac cos Φ(t), (17)

Φ(t) = 2πfct + 2πk

∫ t

−∞
m(t)dt (18)

Note that the instantanous frequency of the signal is thus

f(t) =
1
2π

dΦ
dt

= fc + km(t) , (19)

as implied by the name FM. We would like to understand two things: why are FM radio
channels separated by 200kHz on the radio dial, and how should the constant k be chosen?

Consider for simplicity the case when the audio signal is a pure tone of frequency fM : m(t) =
AM cos(2πfM t), so

SFM (t) = Ac cos(2πfct + kAM sin(2πfM t)) (20)

The product kAM ≡ βf is known as the “frequency modulation index”. From eq (19) we see
that in this case

f(t) = fc + fMβf cos(2πfM t) , (21)

so βf is the ratio of the peak frequency deviation to the modulation frequency.

a) Show that J−n(x) = Jn(−x) = (−1)nJn(x).

b) Show that the Fourier transform of SFM (t) given by eq (20) is an equally spaced se-
ries of delta functions (called sidebands) with separation fM , centered on fc, and with
amplitudes given by the Bessel functions [hint: use the result of Problem 2d]:

S̃FM = Ac/2
∞∑

n=−∞
Jn(βf ) (δ(f − [fc + nfM ]) + δ(f + [fc + nfM ])) (22)

c) Plot the amplitudes of the first 10 sidebands (i.e. for n = 0, 1, . . . , 10) for βf = 0.3,
βF = 3 and βf = 7. Notice that the number of sidebands with significant amplitude is
approximately βf + 1, as one might have intuited (without the +1) from equation (21).

d) Show that

1 =
∞∑

n=−∞
Jn(x)2 = J2

0 (x) + 2
∞∑

n=1

J2
n(x) . (23)

e) Show that the total power radiated in some very long time 2T is
∫ T
−T S2

FMdt = 2TA2
c/2

is equal to 4T times the sums of squares of the amplitudes of the sidebands. [hint: you
can either use the result of Problem 2d, or Parseval’s theorem, followed by the result of
the previous part.]

f) CD quality music is sampled at 44.1kHz, so encodes frequencies up to 22kHz. Bad-
sounding telephone and AM radio encodes only up to 3kHz. FM radio is intermediate in
quality, so suppose it encodes frequencies up to 10kHz. We want to choose the constant
k in equation (18), and hence βf as large as possible so as to maximise the dynamic
range of music we can encode even when the radio signal is weak (i.e. we can measure
the amplitudes of the various sidebands only with relatively poor accuracy). Show that



for fM = 10kHz, you have to choose βf < 8.6 to ensure that less than 0.005 of the signal
power leaks into the adjoining FM radio channels (whose sidebands start at ±100kHz
from the center channel: remember the stations are separated by 200kHz). [hint: you
will need to evaluate the 1−

∑10
−10 J2

n(βf ) as a function of βf ].

g) Show that for a 3.33kHz signal encoded with the same βf = 8.6, the fraction of the signal
power leaking into the next FM radio channel is only 2× 10−29. Thus the owners of FM
radio channels can trade between high dynamic range at low (talk show) frequencies, or
lower dynamic range at high frequencies (instrument harmonics on music stations).

Total points: 83


