ACM95/100b
Problem Set 7 Solutions
03/104

Problem 1 (20 points)
a) (8 points)

0 -m<x=<0

Foo= X O=sx<nm

f(x) = Z foei"*

n=—oco

1 T ) 1 ) e " (L+inm)-1
=g [ temay= oo [yemmays T 00
27 J_, 2n Jo nl4 n=0

b) (6 points)

00

gx) = Z u‘(e_”m (1+inﬂ)_1)8in(nx)

21 n2

n=—oc0

n+0

o 5 (A

n=—co

n+0

The sine terms, g(x), should represent the odd extension of x/2 frojto{@e whole real line:

goddextensionz (X - 2 kﬂ')/Z fOf (2 k - 1)71' < X< (2 k + 1)71'
By simplifying the series g(x) we get

00

n+1
gx) = Z ) Sin(nx)

n=1 n

A simple plot of 100 terms confirms our suspicion.

Figurel

The cosine terms, h(x), should represent the even extension of x/2 frdno[the whole real line

ge\/enextensionz |X—2kﬂ'|/2 fOf (2k— 1)71' < X< (2k+ 1)71'
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By simplifying the series for h(x) we get

00

-D"-1
hx) = % +Z % Cos(n x) @)

n=1

A simple plot of 10 terms confirms our suspicion.

-1
Figure2
c) (6points)
> 1/2 -71<x=<0
' _ _1\n+1 —
g(x)_nZ:;( D™ CostnX= 15 o y ox (8)

00

hl(X):Z ]-_ﬂ(_—;]-)Sin(nX)Z _1/2 -71<xXx=<0
n=1

1/2 O=<x<nm ©)

Since the function that g(x) is the fourier sine series of is continuously differentiable,onwith slope 1/2, we expect
that the series found by differentiating the sine series term by term should be the fourier series of 1/2. However we are
wrong, as the following plot of 100 terms shows

imu

-2

Figure3

The problem is that the series g(x) is slowly convergent, it fails the Weierstrass M-Test for all X, so probably isn't uni-
formly convergent anywhere(Give bonus points for proving non-uniform convergence) As a result, the term by term
derivative of g(x), whose coefficients don't decay, doesn't converge anywhere. The reason for the slow convergence of
g(x) is that the odd periodic extension of g(x) is a discontinuous function, i.e. it jumpsabyk2(2k+) for all integers k.

The series found from term by term differentiation of g(x) is attempting to approximate a function which is the derivative
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of a discontinuous function, i.e. g'(x) represents 1/2 plus a bunch of delta functions centered atx=(2k+1)
The differentiated series still "converges" to 1/2 plus a bunch of delta functions in the sense discussed in the appendix of
problem set 5 solutions.

Since h(x) is the cosine series representation of a function which is not differentiable at x=0, we expect that the deries foun
by differentiating the cosine part term by term should be a step function. A plot of 100 terms confirms this
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Figure4

Notice that the series h(x) is uniformly convergent by the Weierstrass M-Test

1" -1 " -1] 2

‘—ﬂ —— Cos(nx) < |—; ‘s s (10)
and

22

Z T (11)

n=1

converges (tar/3). The term by term derivative of h(x) doesn't pass the M-Test and so likely isn't uniformly convergent.
(give bonus points for proving non-uniform convergence) So we shouldn't expect the derivative to be a continuous
function everywhere, and indeed it isn't at x=0. Compare the convergence properties to that of the function g(x). Here, the
even periodic extension is a continuous function, leading to more rapid convergence of both h(x) and it's termwise
derivdive.

Problem 2 (2x7 points)
a)
e—a2 x2 (12)
By completing the square we have:
F (e—aZ XZ) _ f e—ZﬂifX e—aZ X2 dX = e_(%)z f e—a2 (X+’;—;f)2 dx (13)
Make the change of variable
mif

y=ax+ (14)

The integral becomes

nif

e e L)’ ! Ty
e ) dx=— eV dy (15)
0 a J gzt
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Since the integrand is an entire function, we can deform this contour continuously in the complex plane into another
contour more easy to evaluate without changing the value of the integral.

f eV’ dy =f eV dy=+nr (16)
mif
—oot 2 —00

So we conclude

F (e )= g e 7)
b)
o —2rifx
T(i)zpvf ‘ dx (18)
X e X

For <0 use the following contour which we cBfi,

-R -€ € R
Figure5b

Since the integrand is analytic on and insitle the Cauchy-Goursat theorem tells us that this integral will vanish. A
counter-clockwise traversal of this contour gives

€_2”“Z R €_2”“Z e—ZﬂifZ —€ e—ZﬂifZ €_2”“Z
0= dz= dz+ dz+ dz+ dz (19)
z . z z R Z z
r

Cr Ce

We now evaluate/bound each portion of this. The integral around the large circular contour vanishes by Jordan's lemma.
The details are shown here:

€_2”“Z Vs e—27rifRe"" _ 7T ) y 7T _
f dz| = f ———Rie?do sf |e~2miTRe |d0=f R (20)
z 0 Reif 0 0
Cr
Jordan's lemma tells us that since f<0
. 2f
f Sind < — 0 on[0, 7/2]
g (21)

2f
fSing < — (m—0) on[n/2, n]

These give us

/2 ) /2 €2Rf7r -1
f €2ﬂfRS|n9d0Sf €4Rfﬁd0= >0
0 0 4Rf

27Rf -1 (22)

f”€27rfRSin9 stfﬂemf(n—ﬁ) do= N 0
a2 2 4Rf
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So as Ry

e—ZﬂifZ
f 5 dz-0 (23)

Cr

On the small semicircular contour we have

e2rifz 0 e—27r£fsei” ) 0 ) o 0
dz= | ———c¢€ie”do=| > id0> | id0=-ni 24)
z . eel’ B .

Ce

So we find for f<0

?(%):Pvfm “e—z:fx dx =

00

) R 6_2”“Z —€ 6_2”“Z ) e—ZﬂifZ e—27rifz )
lim dz+ dz|=Ilim|- dz - dz|=ni
R\ J, Z _R Z R-o z z

-0 -0 Cr C.

(25)

For >0, notice that by a change of integration variable y=-x we have

00 €_2”“X 00 e—27r£(—f)y
PVf . dx:—PVf Tdy:-m' (26)

00

00

since -f<0. So we conclude

1 -ni >0
?(;): ni f<O @0
Problem 3 (25 points)
a) (10 points)
e dc
ot ax2
28
cX, 0=0Cod (X&) 29
C(xo0,)=0
T (w, t):f e 27X o (x, 1) dx (29)
Fourier transforming the left side of the equation gives
ac ® oaifx OC 0 _oriix Jc
i [ i - - i - __ 30
T(at) Ime o dx o _me cdx o (30)
Fourier transforming the right side of the equation and using integration by parts gives
&c ? amitx 9°C 2 (7 _omitx 2¢2
— | = —ent R = 1 Tent = — 31
T(axz) j:me % dx=Q2nif) Ime cdx=-4n°f°tT (31)

In the integration by parts procedure it was assumed that @ aaghish at 0. Transforming this initial condition gives

F G- =0 [ e sx-Hdx=coe (32)

So the transformed problem is
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otT
ot
—C(f, O) — CO e—2ﬂif§
The solution (found with integrating factors or the general solution formula) is

=-47°f°Dt

T, )=co e—znfg €—4n2 2Dt
To get c(x,t) we must invert the transform

ux0=74w61»=%1‘8””*%4ﬁﬁmdf

—o0

In problem 2a we found

. _

A P s £y 2

f eV ®? g7 = \/— e D)
—o a

The integral we're evaluating is identical to this with

z=f1
a=2nxVDt
y=é-x

So we conclude

00 — e 2
f 2Tt ar 2t gy ‘/”_ o (Zover)
o 27Dt

or after simplifying

Co _ x=£?

C(X, t): @ 4Dt
VarDt

b)(10 points)

@C_D(@ZC dc 82c)
ot "\ Tayr T oz
C(XiyiZy@:%é(x_f)é(y_n)é‘(z_g)
im c¢=0

x2+y? +7% 50

The Fourier transform is defined as

T(w, 1) =f f f e 2ritly YD o (x y z, Y dxdy dz

As in the previous part
8c)_ otT
ot ot

Also as in the previous part, integration by parts may be performed to calculate

a

#c d*c  dc
T(@? + W + 87)2—471'2 (fxz +fy2 +f22)C=

The initial condition is equally simple to calculate

F (oo (X=£)6(y=m8Z=0)=coe 2™ IhlEnd
So our problem becomes
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(40)

(41)

(42)
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Jt
S =4 (67 +f, %+ 1) De (45

c(w, 0)=co e 2riltly ) Emd)

The solution to this is

T=¢ e 2mi(hfy f)En0 €—4n2 (F 2+, 24,9 Dt (46)

Inverting is done just as in the last part

c(x,y,z,0= f f f 2l YD o (f, b dfy dfy df, (47)

Which, after inserting the expression fgrcan be written
Co (fOOeZm‘fx X p2mifyé e—47r2 2Dt dfx) %

00
. _ . 4252 . _ . 4252
(f€27”fyy€ 27rxfyr]€ 472 f, Dtdfy)x(f eZHEfZZe 27r£fz{€ 4n% 1, Dldfz)
—00 —00

Notice that in this form, each of the integrals is exactly like the one we calculated in the previous part, so we knew that thi
last expression becomes

(48)

c ( 1 (fé)z ]( 1 _%]( 1 _(z_z)z_] (49)
0 —_—f t —_—f t —_—
V4Dt V47Dt V4Dt

Which simplifies to
Co _ (xff)hu:g):ﬂzfz)z
@rDO
c)(5 points)

(50)

We suspect that by superposition the function found in the last part, call it G, can be used to solve

ac (620 5c 82c)
— =D =+ — + —
ot ox2  9gy?2 072
ciXV¥,2,0=0(XY,2

Define a new function u as follows

(51)

u(x,y.z>=ff GEm OGX Y, 2t é 0, O dédndl (52)

We will show that this solves the PDE and satisfies the initial condition. For shorthand, denote the triple integra-over all
space as

f dx (53)

and use vector notation

X=(XY,2

54
E=¢n0 ®4)
S0
u(X):fg(E)G(X,HE)dE (55)
we calculate
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- _ = - R 56
u(X,O):fg(z)G(X,Ol.:)d =fg(z)6(X—.: dE=g(X) (
assuming that derivatives can pass freely through the integral and recalliGg=bAIG
Uy = fg(E)Gt X, t|E)dE = ng(E)AG(X, t|B)dE = DAfg(E)G(X, t|1E)dE=DAu (57)
So u defined this way satisfies both the initial condition and the PDE
Problem 4 (5x%5 points)
y' Aty =f(x)
58
yO=y'1)=0 (58)
a)
y'+1%y=0 (59)
yO=y'(1=0
Since this is a constant coefficient linear ODE it will have at least one solution of the'forilugging this in
rr+2%2=0 (60)
So the general solution is of the form
y =Ae* + Be X (61)
The boundary conditions give
A+B=0 (62)

Ade* —Ble™ =0
Systems of equations only have non-trivial solutions when the determinant of the corresponding matrix is zero
‘ 1 1

A em Y e—m

=A(—e ™ — ™) (63)
A=0 is one solution, other solutions of this are found by rearranging

2 = 1 = pr@ntDi (64)

aquick check shows that0 gives y=0 which is trivial. The other valuesAdajive

A =@2n+ /2

Yn = Sin(A, X) (65)
b)
w2 _
G"+2A Gl_é(x ) (66)
GO)=G'(1H=0
Method 1: The Usual Approach
If A#£0, the Green's function will be of the form
_ ASiIn(Ax)+BCos(Ax) 0=x<¢ o7
" CSinAx)+DCos(Ax) é<x=<1 (67)
To determine the constants, we first fit the boundary conditions
B=0 (68)

CCos(A)—DSin(A)=0
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These give

_ ASin@Ax) O<x<¢
C= ECos(x—-1) £<x<1 (69)

Continuity and the jump condition on the derivative a require

A Sin(A¢)=ECos(A (£ - 1))

—EASINA(¢-1)-AACos(1é) =1 (70)
We conclude
—Cos(A (¢-1)) Sin(A x)
. toem  0=X<¢ 1)
- Cos(l/{)zz—ols);Sm(l.f) f <x<1
For 2=0, a simple analogy to this process, or taking the limit of the expression abov8 gwes
-X 0=x<¢
G_—§ E<x<1 (72)

Method 2: Eigenfunction Expansion
Since the eigenfunctions are complete in the space of piecewise continuous functions, we can look for a solution of the form

G= Z an Sin(An X) (73)
n=0

Since the eigenfunctions come from a regular S-L eigenvalue problem we have an orthogonality condition

T . 0 n#m
j; Sin(A, X) Sin(Ay X) dX = 1/2 nem (74)
So we have
1
a, = Zf Sin(An X) G (x) dx (75)
0
Multiplying both sides of the ODE by one of the eigenfunctions and integrating gives
L 1
f Sin(A, X) G"dx + A2 5 %= Sin(, &) (76)
0
Integrating twice by parts gives
1
f Sin(An X) G"dx =
° . (77)
(Sin(Ap X) G'— A, Cos(An X) G),_; — (SIN(Ay X) G' = Ay Cos(An X) G), g — An2 f Sin(An X) GdXx
0
Simplifying
1 1
f Sin(A, X) G"dx = 1,2 5 o (78)
0
So we have
, 1 , 1 .
- S+ X 5% = Sin(, &) (79)

Which simplifies to

Printed by Mathematica for Students



B 2 . (80
oy = 7(2——&,2 Sin(A, &)
So the Green's function is
5 Sin(A, §) Sin(A,
nZl iNn(A, &) Sin(A, X) 61)
=2n+ 1)7r/2
c)
y 22y =fx
82
yQ=y'(@1= (62)
We suspect that the solution is of the form
1
- [fosxioa (83)
0
It is easy to check that this is a solution (assuming that derivatives can be passed through the integral)
1 1
y"=f f (&) G (x|§)d§=f FOOX-6-2GxINdE=Fx) -2y (84)
0 0
1 1
v [ fO60ad- [ feoa=o
0 ) 0 . (85)
v = [ f@6od= [ 1©0de=0
0 0
Method 1: The Usual Approach
We can write out the expression for y and simplify
for Az20
Cos(A(x-1) [~ , Sin(A Sin(Ax)
LoD [tosinugac- SR ("t cosa - 1de (8
for 2=0
1 X
y=-x [ t@ode- [ t@cae (87)
X 0

SinceA isn't an eigenvalue, Cag0, so solutions exist in this form provided that the integrals exist.
Method 2: Eigenfunction Expansion

We can write out the expression for y and simplify (assuming that integration can be interchanged with the sum)

y = ff(f)z Sln(/\n & SIN(A, X)dé& = Z Sm(z\n X) (88)

wheref, are the coefficients

1
f, = Zf f (X) SiN(An X) dX (89)
0
A solution of this form will exist provided that the integrals do.

Using either method, the solution will be unique. Suppose that it weren't unique, i.e. there are (at least) two solutions
Printed by Mathematica for Students



y" +A%y =fx)

yO)=y'(1)=0 (90
z"+2%2z=f(x)
z(0O=z2'(H=0

Consider the difference of these, w=y-z. As you may check, by definition w is the solution to

w"+22w=0
w0 =w'(1) =
For A not an eigenvalue, this BVP has only the trivial solution w(x)=0. Hence y=z so there can't be more than one solution.

(91)

d)

Students may explain this part by simply referring to equation 12 of a handout Dr. Phinney distributed, or they may use one
of the following mehtods.

Method 1: The Usual Approach

Cos(A (x—1))

Y=~ Cosl j; f () SinAé)dé -

Sin(A x)

SHe [rercosae-mae 92

If we expand the Cosine terms and simplify we get

Sin(A x) Sin(4)
A CosA

Sin(A x)

1
f (&) SN\ &) dé -
° (93)

1 X
f f(f)COS(Af)df—w f () SIN(Lé) dé
X 0

These last two terms will be bounded wheis one of the eigenvalues. If we were talletd,, in the first term the denomi-
nator would vanish. So the only way we can get a finite limit as weslgt is if we require

1
[ t@sna,ae=o (94)
0
This solution isn't unique, since

z=y+AY, (95)

is also a solution for any A as you may check.

Method 2: Eigenfunction Expansion

[ f '
y=>, =7 Sin(An x)

n

n=0 (96)
fn = Zf f (X) Sin(A, X) dx
0

If A is one of the eigenvalues, say, then the solution will only be valid if

1
fm = Zf f(X)Sin(Am X)dx =0 (97)
0

Notice that by adding any multiple gf to y we still have a solution to the PDE and boundary conditions. So the solution
isn't unique since any function of the form

z=y+Ay, (98)

for any constant A will give a solution.
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Extra stuff not to grade on

We might suspect that our solution method itself is flawed and that maybe the Green's function method fails to produce a
solution whem=A,, unless f has certain properties. It turns out that the condition we found is quite general and isn't a
result of the green's function method. Define Ly=y" and suppose y is a solution to the ODE, then since, with the given
boundary conditions, L is self-adjoint we have

(f, Ym) =
(LY + A Y, Ym) = (LY, Vi) + Am” (s Yin) = OV, LY ) + An” Y, Vi) = An” = An®) Y, Yim) = O
So the only way there can be a solution to the ODE is if f is orthogonal to the eigenfunction correspongingrnto
deriving this we didn't use any Green's functions.

(99)

e)

Students may explain this part by simply referring to equation 8 of a handout Dr. Phinney dstributed, or they may use one
of the following mehtods.

Method 1: The Usual Approach
Recall the expression we found for the solution in part (d)

H 1 X
y=—w f f(f)COS(Anf)df—w f () Sin(Ay &) dé (100)
n X n 0

After some algebra

1 1
v+ [ f@sinan € -xde (101)

So the (non-unique) solution is

1
)Li f f (&) Sin(A, (£ -Xx)dEé+ ASIn(A, X) (102)

Method 2: Eigenfunction Expansion
Recall the expression we found for the solution in part (c)

= fi .
y=>, A Sin(Ax x)
k=0 (103)

1
fk = Zf f (X) Sin(Ag X) dx
0
In (d) we made the restriction that=0 and also observed the non-uniqueness. So our (non-unique) solution is

00

fi : .
Y )Lkz Sin(A¢ X) + A Sin(A, X) (104)

k=0
k#n

Problem 5 (2x15 points extra credit)

1 1
Z W=7 (rue),
ur,0=~f(m
u (r,0=0 (105)
u (0, t) = finite
U(o,0)=0
a)
Given:
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u(, tla= Z Cm X (am r/a) Cos(an ct/a)

m=1
foarf(r)Jo(am r/adr
anrJQ2 (amr/a)dr

J (@m)=0
am>n(m-=1/4)

1
f xJo? (am ) dr =34 (am)/2=J7 (@m)/2- 1/(M7?) = 1/(@m 7 +7° [ 4)
0

foarf (N (@mr/a)dr
anrJQ2 (amr/a)dr
Define
wm =ap/a
Notice
Awpy, = Xme1 — Am N 4
a a

Let us write u as

U= émJ (@) Cos(n ) =

m=1

a a [ri0d@nr/adr 1 1
fm=—Cn=——3 == — farf(r)JO(wmr)dr
n n fOrJoz(amr/a)dr T adb™(am)/2 Jo

Now, as a», we have

®m —>¢(w)=wf rfN (wndr

0
u- f ¢ (w)Jp (wr)Cos(wct) dw
0

Setting t=0 we have the transform pair described by

f(r):fw(f sf(s).]o(ws)ds)Jo(wr)dw
0 0
b)

1
C_zultzuxx"'uyy

ux,y, 9=F(xy
uy 0=0

u (0, t) = finite
U(o,0)=0

b f f e 2H BN u(x, y, v dxdy
Fourier transform the equation. The transform of the Laplacian is done just as in problem 3

Uy = —471'2 C2 (fxz +fy2)U
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So the solution is

U=ACos(2rc/f? +1,2 )+ BSin(2rcy/f,2 +1,2 1] (116)

where A and B are determined by the initial data

ufy, fy, 0)=f f e 2Tt £ (% y) dXx dy

(117
Ul (le fyy O) = 0
So we have:
U= COS(ZHC\/ fy? +f,2 t)f f e 2r 0N £ (x vy dx dy (118)
or

u:fmf 2T Tty (Cos(ch\/ fy? +f, 2 t)f f e‘z””fX*fv)'(“"’)f(u,v)dudv)dfx dfy (119)

One way to perform these integrals is to change to polar coordinates

u=sCos¢p
v =sSing
fy = zCosy
fy =z Siny
x =rCos#f
y =rSind

(120)

2 co
u= f f 727 112C080-0) Cos2nczh) A (Y, 2 dzdy (121)
0 0

27 co
AW, 2= f f Se 2ris2Cos6-V) £ (g) dsd ¢ (122)
0 0

Consider changing the order of integration in the expression for A

00 27
AW, 2= f sf(s)( f e—2“‘52005<¢-*”>d¢]ds (123)
0 0

By writing out the real and imaginary parts of the integrand, exploiting symmetry, and using the definition of the order zero
Bessel function of the first kind

Jo (X) = % f Cos(xCosbh dt (124)
0

We are able to calculate
27
f Cos(2nszCos(¢p—y)do =
0
Zf Cos(2nszCosp)d¢ = Zn(% f Cos(27rszCos¢)d¢) =21 (27s2) (125)
0 0

27
f Sin2rszCos(¢p—¥)d¢p =0
0

These give a simpler way to write A

AW, z)=27rf sf(9h (2nsads (126)
0
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Notice that A is actually only a function of z. Inserting this into the integral for u and changing the order of integration
gives

00 27
u =f zCos(2nczHh A (2) [f g2rirzCoso-p) cw]dz (127)
0 0
This inner integral was just calculated (except with a + instead of a - in the exponential) so the inner integral is

21X (-2nr2) (128)
From the definition, we see that the Bessel function is an even function so our formula for u is

u=47r2f z(f sf(s)JO(27rsz)ds)Cos(27rczt)J0(anz)dz (129)
0 0

Setting t=0 gives the Hankel transform pair

f(r)=47r2fz(f sf(s)Jo(Znsz)ds)Jo(anz)dz (130)
0 0

Changing the integration variable

w=2n2z (131)
gives the expression derived in part (a)

f(r):fw(fmsf(s)\b(ws)ds)\]o(wr)dw (132)
0 0
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