
Problem Set 7
Feb 27, 2004 Due Mar 5, 2004
ACM 95b/100b 3pm at Firestone 303
E. Sterl Phinney (2 pts) Include grading section number

Useful Readings: For Fourier series and transformations: Arfken Chapters 14 and 15. Hassani
Chapter 8. For Green’s functions, Carrier and Pearson sections 7.2-7.4, Arfken section 9.5 (sections
16.5, 16.6 in earlier editions!), Hassani chapter 20 and sections 21.1-3. Notice that these use different
definitions of the Fourier transform than the one given in class, where the FT of g(x) was defined
as FT [g] ≡ g̃(f) =

∫∞
−∞ g(x) exp(−i2πfx)dx, with inverse g(x) =

∫∞
−∞ g̃(f) exp(i2πfx)df This

definition has the advantage that there are no factors of 2π or
√

2π to keep track of, and you are
encouraged to use it. If you use some other definition, be sure to state clearly what you are using.

1. a) (8 points) Find the Fourier series representation of the period 2π function f(x) for which

f(x) =
{

0, −π < x ≤ 0
x, 0 ≤ x < π

(1)

b) (6 points) What function does the sum of only the sine terms of your series in part (a)
represent? What function does the sum of only the cosine terms represent?

c) (6 points) If the separate sine and cosine series of part (b) are differentiated term by
term, what functions (or generalized functions) do they now represent? Do they converge
uniformly on some interval?

2. (2× 7 points) Calculate the Fourier transforms of

a) exp(−a2x2) Take a > 0. (hint: complete the square in the Fourier exponential, use
Cauchy’s integral theorem, and then the fact that

∫∞
−∞ exp(−s2)ds =

√
π)

b) 1/x. Your answer should be valid for both signs of f . (hint: treat the Fourier integral
as a principal value and use residue theory).

3. Consider the heat/diffusion equation in an infinite medium: for temperature/concentration c
with constant diffusion coefficient D:

D∇2c =
∂c

∂t
(2)

a) (10 points) Solve for c(x, t) the 1-dimensional version of eq (2)

D
∂2c

∂x2
=

∂c

∂t
(3)

with initial condition c(x, 0) = c0δ(x − ξ) and boundary condition c(±∞, t) = 0. Solve
this equation by Fourier transforming the PDE. When you Fourier transform the PDE
you should get an ODE in t for the Fourier transform c̃(f, t). Fourier transform the
initial condition to determine c̃(f, 0) at t = 0, and then inverse transform. You should
find that

c(x, t) =
c0

(4πDt)1/2
exp−([(x− ξ)2]/4Dt) . (4)

[Hint: one of the results of Problem 2 will be useful, and the Fourier transform has a
shift theorem just like the Laplace transform.]



b) (10 points) Now repeat the calculation for the 3-dimensional version of eq (2), and solve
for c(x, y, z, t) with initial condition: c(x, y, z, 0) = c0δ(x−ξ)δ(y−η)δ(y−ζ). You should
find that

c(~x, t) =
c0

(4πDt)3/2
exp−([(x− ξ)2 + (y − η)2 + (z − ζ)2]/4Dt) . (5)

c) (5 points) Show that you can superpose this result (a Green’s function) to find the
solution to the diffusion equation for arbitrary initial conditions, c(x, y, z, 0) = g(x, y, z).

4. (5× 5 points) Consider the equation

d2y

dx2
+ λ2y = f(x), y(0) = 0, y′(1) = 0 (6)

a) Find the eigenvalues λ and eigenfunctions for the homogeneous problem f(x) = 0.

b) Find the Green’s function (i.e. the solution for f(x) = δ(x − ξ)) when λ is not an
eigenvalue.

c) Use this to find the solution to eq (6), still assuming λ is not an eigenvalue. Is the
solution unique? Is there any restriction on f(x) for the solution to exist?

d) Now suppose λ is an eigenvalue. Is there any restriction on f(x) for a solution to exist?
Is the solution then unique?

e) Again assuming λ is an eigenvalue and any restrictions on f(x) are satisfied, give the
solution to eq (6) in Green’s function form.

The last problem is for extra credit. Part (a) explores further the relation between discrete
eigenfunction expansions on finite intervals and the continuous (integral transform) case that
arises on infinite intervals. The (independent) part (b) rederives the same result in a totally
different way, and offers an opportunity for more practice in solving PDEs by Fourier trans-
forms (like problem 3). Both introduce the remarkable Hankel transform which (in contrast
to Fourier and Laplace transforms) has the elegant property that the forward and inverse
transforms are identical.

5. (2 × 15 points extra credit) Consider the axisymmetric drum solved in class (cf. also PS6,
#3, but with no φ dependence), but now let the radius of the drum go to infinity.

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
=

1
c2

∂2u

∂t2
; u(r, 0) = f(r), ut(r, 0) = 0; u(0, t) = finite, u(∞, t) = 0 .

(7)
There are many ways to find the solution. Here are two:

a) Find the solution to this problem by taking the limit of the series solution derived in
class (the same as the n = 0 part of PS6, #3) as the radius of the drum a→∞:

u(r, t) =
∞∑

m=1

CmJ0(αmr/a) cos(αmct/a) , where (8)

Cm =

∫ a
0 rf(r)J0(αmr/a) dr∫ a

0 rJ2
0 (αmr/a) dr

. (9)

Here αm is the mth root of J0(x) = 0. The procedure is very similar to the procedure
followed in class to derive the Fourier transform by letting the period of a complex



Fourier series 2L → ∞. In doing this you will need two results (which you need not
derive) that can be found using the asymptotic form of the Bessel function for large
argument (also derived in class):

αk → π(k − 1/4) and (10)∫ 1

0
(xJ2

0 (αkx) dx = J2
1 (αk)/2 = J ′20 (αk)/2 → 1/(kπ2) (11)

for large k. As in the Fourier case, you will make use of the fact that an integral of a
function is defined as the limit of the sum of the areas of rectangles under the function,
as the width of the rectangles goes to zero. You should find

u(r, t) =
∫ ∞

0

[∫ ∞

0
sf(s)J0(λs) ds

]
λJ0(λr) cos(λct) dλ (12)

You have not only solved the PDE, but (if you set t = 0 in this equation) you have also
just derived for yourself the Hankel transform of order zero of f(s) (in square brackets)
and its inverse transform. This procedure generalises to the nonaxisymmetric case and
gives the general (order n) Hankel transform pair.

b) Solve the differential equation in x, y cartesian coordinates (the drumhead is infinite after
all, so unlike the finite radius case, it doesn’t matter whether the boundary condition is
applied at a circular infinity or a square one!) by Fourier transforming the PDE, and
deriving an ODE in t for

ũ(fx, fy, t) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y, t) exp(−i2πfxx) exp(−i2πfyy) dx dy; . (13)

Solve the ODE. You should find ũ = A(k) cos(ckt), where k = 2π
√

f2
x + f2

y . Do the
inverse transform to find u(x, y, t). Apply the initial conditions to determine A(k).
Then convert your 2-D cartesian Fourier integrals to polar coordinates and integrate
over the angle (on which nothing depends, by axisymmetry). In doing this, you will
want to use the following identity 1

J0(x) =
1
π

∫ π

0
cos(x cos θ) dθ (14)

You should find the same solution eq (12) as you found in part (a).

Total points: 86

1If you are wondering where this comes from: you can derive it by Laplace transforming the Bessel differential
equation for J0, to discover that the Laplace transform of L[J0] = 1/

√
1 + s2. Then use the Mellin inversion, and

collapse the integral to lie along the branch cut.


