ACM95/100b
Problem Set 6 Solutions

02/2304
Problem 1 (4x5 points)
(a)
TREETY (1)

Let u=X(X)T(t) and simplify

T, X"
I _2X 2
T %% @

Since the left side of the equation is a function of t only and the right side is a function of x only, the equation cdd only h
if each side is the same constant.

T"+Ac2T=0
X"+AX =0 3)
(b)
Uxx + Uy + Uz =0 (4)
Let u=X(X)Y(y)Z(z) and simplify.
., x (5)
Y VA X

Since the right side depends only on x and the left side is a function of y and z, it must be that both sides are the same
constant

X" 41X =0
& z" (6)
—_— =) - =
Y z

A similar idea applies to this last equation

Y'+yY =0

Z"-A+9)Z=0 %
(c)

U = K Ugy — C Uy (8)

Let u=X(X)T(t) and simplify.

T XX
I _ X _.X 9
T =k5—¢x ©

Since the left side is a function of t onlyand the right side is a function of x only, each side must the same constant

T'-AT=0
kX"-cX'=2X=0 (10)
(d)
1
vt+rxvx+§azx2vxx=rv (11)

Let v=X(x)T(t) and simplify.
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fx X' . 1 2,2 X" ; T (12
_— — O —_— = —
X 2 X T

Since the left side is a function of x only and the right side is a function of T only, each side must be the same constant.

T+A-nT=0

1 13
EUZXZX"+rxX'—)LX=O (13)

Problem 2 (3x5 points)
(a)

Ut = K (Uxx + Uyy + Uyz) (14)

Let u=X(X)Y(y)Z(2)T(t) and simplify.

T XU ooy ooz
T |
By the reasoning of problem 1 we have

(15)

T -AxkT=0
Xt oy oz (16)

Applying the reasoning iteratively to this last equation gives

X"+yX=0
Y"+uY=0 a7
Z"-A+y+wZ=0

(b)

1
U = K — (2 ), (18)

Let u=R(r)T(t) and simplify

T 11 ., .,

By the reasoning of problem 1 we have
T -AxkT=0
(PR)' -Ar’R=0

another way to write this last equation is

(20)

2
R"+?R‘—)LR=O (21)

(©)

(Sinf uy), + (22)
r2

1 1 U )
r2 Sinf sitg

Let u=R(rE(0)®(¢)T(t) and simplify

1
U = K(r—z (r up), +

T 1, 1 (SInGE"" 1 Q"
— =x[— (r? RY’ i

K( ( ) r2 Sing =2 " r2 Sirt 0 <I>)
By the same reasoning as problem 1 we have

(23)
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T -AxkT=0

1 Ry + 1 (SineE"" Lo Lo (24
R 2 r2 Sing ) r2Sitg ©
Multiplying by r? and simplifying gives
1 (Sing="' 1 o" 2 1, .
Sing = + S|r|20 —(I—)— =Ar - E (rR" (25)

Since the right side is a function of r and the left side is a functiéraodl¢, both sides must be the same constant, call it

(PRY+(y-Ar’)R=0

(Sing=")’ " (26)

Sing —ySif§=——
= y (I)

—

Again, each side must be the same constant, gall it

O"+ud=0
Sind(SingE)' — (ySifd + w)2=0

Problem 3 (5x%5 points)

(27)

1 1

@ W=7 (ruy), + 7 U
ur, ¢, 0="F(, ¢

U (r,e, 00=0

u@ e t)=0

u(0, ¢, t) = finite

(28)

(a)
Let u=R(rY¥(¢)T(t) and simplify

17T 1 (R’ 19"
—_— e = + - —
2T rR( ) rZ g

Each side must be the same constant, call it -

(29)

T"+Ac*T=0
e

— ——)er—L(rR‘)'
v R

Each side must be the same constant, call it -

(30)

¥"—y¥=0

rrR)' +@Ar*+y)R=0 &1

(b)
=y ¥ (32)

In order for our solution to be physically meaningful, it mustpe&iodic ine.

ur,g,)=u(r,¢+2n,1t

Uy, (e, =u, (r,o+2m, 1) (33)

This implies

¥"—y¥=0
¥(0) =¥ (2n) (34)
P'O)=v'2n
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This ODE is in Sturm-Liouville form (p=1, =0, w=1) and the boundary conditions are periodic giving us a periodic S-L
eigenvalue problem. There will be solutions of the feff pluggin this in gives

2=y (35)
So the solution is of the form

Y=Ae"¢ +Be "¢ (36)

The periodic conditions give

1/2 _ 2
A+B=Ae 2" +Be ¥ 27

A-B=A ew/l/z 27 _ B e—w/l/z 2n (37)
This can most easily be written in matrix form
1— 671/2 on 1- e_yl/z on A 0

1—@71/22ﬂ —1+€—71/22ﬂ](8):(0) (38)

If the matrix were invertible then the system would only have the trivial solution A=B=0. So, to get a non-trivial solution
we require that the matrix not be invertible which is equivalent to requiring that the determinant of the matrix be zero

(1-e27) (14727~ (1- " 27) (1~ 27" 27) = 0 (39)
Simplifying
(62”1/1/2 _ 1)2 =0 (40)

Solving this gives

2nyY2 =27ni (41)
or

Yn = -n? (42)

where n is any integer. A quick check shows that n and -n both give the same eigenvalue and eigenfunction. So we have

Yn=-n?forn=1, 2, ...

¥, = A, Sin(ng) + By, Cos(ny) (43)
and

Y% =0

¥, = By (44)
(©)
From parts (a) and (b) we have

r(rR)' +(y+Ar’)R=0 (45)

Yn = —n?
Recall the boundary conditions

u@ e, =0

u(0, ¢, t) = finite (46)
These imply

R@=0

R(0) = finite (47)
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The ODE can be rewritten

n2
(rR‘)'—TR+MR=O (48)

This in is S-L form with

pm=r
q =-n?/r (49)
wh=r

From S-L theory we expect the orthogonality condition to be

farR NRc(Ndr= m#k 50
. m (N R () = 40 m=k (50)
Where m and k refer to some way of indexing the eigenfunctions.
(d)
Write the equation as

PR"+rR'-=n?R+Ar’R=0 (51)
Since the origin is a regular singular point, there will be at least one solution of the form

R=) acr (52)

k=0

Pluggin this in and simplifying gives

Z@((k+v)2—n2)rk+)t2akrk+2=0 (53)

k=0 k=0
So the indicial equation is

V2 =n? (54)
With solutions

y=%£n (55)
Forv=n we get a solution of the form

Ry = Z a ren (56)

Since 0 these solutions will be finite at r=0. According to Fuch's theorem, when n>0 a second linearly independent
solution will be of one of the following forms

R2 = Z bk rk‘”
k=0

or (57)

00
R, =Ry In|r + Z by <"
k=0

Regardless of which form the solution takes, it will be singular at r=0. For n=0 the second linearly independent solution
will be of the form
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Re=Rilni+ Y ber* (58
k=0

Which will also be singular at r=0 since
Irlgg R, =& Irlgg In|r| +bg = o (59)

Hence, for any n there will be only one solution satisfying the condition of finiteness at r=0 and it will be of the form

R=) acrr (60)

k=0

This will be some multiple of the well known Bessel function

3 (V) (61)

Hence we define the eigenfunction

Ram = dh (‘/m I’) (62)

where m is some label for the eigenvalues which we have not yet determined. The other boundary condition we have is
that R(a)=0. Requiring this gives

h(Vaom @ =0 (63)

It turns out that these Bessel functions have infinitely many roots. This becomes apparent if for example we consider the
following plot of Jg

/\/\/\/\A/\/\/
AR

Figurel
Call the mth root of the nth Bessel functiog,.

I (@nm) =0 (64)
So we have the eigenvalues

Anm = (a’nm/a)2 (65)
(e)
Recall from parts (a) and (d)

T"+Ac2T=0

Anm = (a’nm/a)2 (66)
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Since thel's are non-negative, the solutions will be of the form

Tom = Cham Sin(a@nm ct/@) + Dy Cos(anm Ct/a)
or if one of these Bessel function roots is zero, then the corresponding solution will be of the form

Tnm = Dnm + Cnm t
Recall the initial condition

U (r,p,0)=0
This implies

T =
which tells us tha€,,,=0.

Tom = Dnm Cos(anm Ct/ @)
writing it this way includes the possibility that=0. From the previous parts we conclude

Z Z Dom (An Sin(ng) + By, Cos(Ng)) Jy (VAam ) Cos(anm Ct/a)

n=0 m=1

by redefining the coefficients we get the desired form

5

n=0 j

Anj (Sin(ng) + B, Cos(ng)) Jy (1/ Anj T) Cos(an; ct/a)

INgE

1}
[

as suggested in the problem we write this instead as

i iAnj Sin(ng) J, (\/In,' r) Cos(an; Ct/a@) + i i Cyj Cos(ng) J, (\/In,' r) Cos(an; ct/a)

=1 j=1 n=0 j=1

=

To find these coefficients, recall the only condition we have yet to satisfy

ucr, ¢, 0)="f(r, ¢)
This is

f(r,o) = ZZA”J Sin(ng) J, ( \/—' +iicm Cos(ngo).ln(\/xnjv r)

n=1 j=1 n=0 j=1

Recall also the orthogonality conditions

[oan i 3 (W gae= O mker
0

+#0 m=kandj=i

27
f Sin(ng) Cos(ngp)dy =0
0

0 n+m

27
j; Sln(n(,a)Sln(rmﬁ)d‘»":7r O<n=m

ox 0 O<n+m
f Cos(np)Cos(me)de= 7 O0<n=m
0 27 n=m=0

Multiply the expression for f by Sin(k) and integrate over (Or2to get
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(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)



27 e
f f(r, (,D)Sil’l(k(p)d(pZHZAijk(ﬂlkj I')
0 j=1

Now multiply this by rJ. (v Ay r) and integrate over (0,a)

27 . —
_ bk 10 @SNk derd (VA r)dr
ﬂ'anI'sz (VA r)dr
Now, for k£0 multiply the expression for f by Cosgy and integrate over (072

27 *®
f f(r, (,D)COS(k(,D)Cﬂ(,DZHZij Jk(\/Akj I')
0 j=1

then multiply this by g,(vV A4 r) and integrate over (0,a)

ki

27 —
b Jy f . @) Coskg)dprd (Vi r)dr
ﬂ'anI'sz (Vg r)dr
finally, for k=0, multiply both sides by Cos{®=1 and integrate over (O;2

2 ©
f f(r,go)dgo:ZnZCono(,MOj r)
0 j=1

Now multiply by rJo(V A9 1) and integrate over (0,a)

fork >0

Cu =

_ foafOZHf(r,(p)dgorJO(\/A_mr)dr
27 71 d? (Vaoi r)dr

Problem 4 (5x%5 points)

0i

Y =Ty +T (X, D)

y@=y(L)=0
(a)
From problem set 5 problem 4c we know that the spatial eigenfunctions are
N2
Yo =-(T)

Vn =An Sin(n—:)i)

with orthogonality condition

2 [sin()sin( M) ax= 3 0

Since the eigenfunctions are complete, we look for a solution to the PDE of the form

y (%, 1) = iﬁh v sin(*2)
n=1

and also expand f(x,t) as

f(x, t) =if“ (t)Sin(?)
n=1

Printed by Mathematica for Students
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(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)



Using orthogonality conditions and multiplying these expressions by Zix(iy) and integrating over (0,L) gives

2 (. max
am(t)ztj;Sm( 3 )y(x,t)dx

L
- (t):%f Sin(%)f(x, tydx
0

Multiply the PDE by Sin(mx/L) and integrate over (O,L)

”(fysm(m:x)dx)n=Tj:yxx Sin(mfx)dmj:f(x, t)Sin(m:X)dx

From the definition of the coefficients we may write

mamnX

L
uam"(t)=T3fyxxSin( Jax +fm )
L 0

The remaining integral can be evaluated by integrating by parts twice

LLyxx Sin( mfx)dx =

(yx Sin(@) -y ? Cos( mfx ))X_L - (yX Sin( mfx ) -y ? Cos( mzx ))x—o -

(?)z LLy Sin( mfx)dx =-y(L,1t) % Cos(mnm)+y (0, t) ? —(—

This last expression simplifies since the boundary conditions are homogeneous.

fOLyxx sin( ) dx = —(?)2 % an (O

Inserting this into the equation gives

2
Y an ) =tn

Han" O+ 7T (7

With the initial conditions given by

0=2 [ sin(")yx, 0a
am()—fj; in(——)y x 0 dx

am' 0)=— LSil’l( X X, 0) dx
Case P:

As described in the solution set, and using the answer from problem set 5 problem 4a we have

T (L-Hx 0=sx<¢

yx.0=Y= _

- L-X§ &<x=L
yl(xlo):o
fx,)=0

Inserting these into the results above we find

mo\2
Han" O +T(=) an®=0
Which has solutions of the form
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(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)



m T m T
am =Anm Sin[—ﬂ — x] +Bm Cos[—7r — x] (98
L \/ U L\ u

With the initial conditions given by

2 (-  mnax
%(O)=f£8|n(

)Y(x)dx:

2 R
9 = 99
T TL(L §)fS|n xdx+L w1 §f (L X)dX = (99)
2L FO . mﬂ'f
m2 72 T S ( L )
an'(0)=0 (100)
Applying these initial conditions gives the arbitrary coefficiehtsandB,
2LFy . /mné mn T
an (t) = ——r SII’I( 3 )COS[T /; t] (101)
So the solution to the PDE is
2LFg 1 . (nné nt | T _/nax
y(x, t)= T 2, 7 Sm(T)COS[T ; t] SII’I(T) (102)
Case H:
y, 0=0
YiX, 0=V X)) =FPn/pwéx-%) (103)
fox, =0

Inserting these into the results above we find

2
pan"®+T(75) an =0 (104)

Which has solutions of the form

| T / T
an =An Sin[m — x] +Bn Cos[m — x] (105)
L U L i

With the initial conditions given by

an(0)=0
L2 (o max mmé (106)
an (O)_fj; SII’I( 3 )

Applying these initial conditions gives the arbitrary coefficieitsandB,

_ 2R [p g magy g fma [T
am(t)_”mﬂ T SII’I( T )Sm[ 3 r t] (207)

Y, t)——ﬂ_ % % (nﬂ'f) |n[% Et]sm(%) (108)
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With L=1, £é=1/7 andFo=T, the sollution we found in part (a) for case P is

2 & Sin(nx/7) | T ,
y(x,t)= = Z — e Cos[mr ; t] Sin(nzXx) (109)

n=1

If we define the frequency associated with n=1 to be the fundamental

1 T c
fo==— | — == 110
=3\ % T2 (110)

then the ratios of frequencies of higher normal modes are

Frequency Ratio Musical Interpretation
fo f,/fi1=2 one octave
fa fa/f, =15 amajor fifth abovef,
fa fa/ 3 =1.33 amajor fourth above;
f5 fs/ 4 =1.25 amajor third abovd,
fs fe/f5=1.2 aminor third abovefg
f; f;/ fs = 1.17| Less than the critical bandwidth apart frém

so sounds unpleasantly dissonant
ajangly sound

fg fg/ f6 = 1.33 amajor fourth aboveyg

fo fg/ fg = 1.13| Less than the critical bandwidth apart frém

so sounds unpleasant but amplitude is getting

low so not as objectionable &g/ fg

Thus we can minimize the unpleasant "jangly sound" by chosing to strike the string in such a way as to set the amplitude of
f; (the first self-dissonant harmonic) equal to zero (cf solution to PS5 #4d):i.e.strike the string 1/7 of the way along its
length (cf.solution to PS5 #4d optional part). This lealgesonzero, but its amplitude is low and it doesn't sound nearly so
"jangly" as say a string struck at its midpoint (with lafgeontribution).

(c)
Setting

T/u=c2=1 (112)
We find

2 & Si /
= Z %ﬂ/) Cos(nxt) Sin(nz x) (112)

yx b=
a n=1
Plotting 50 terms of this for various times we see a wave which changes amplitude as it travels rightward from t=0 until it
is reflected at t=1. So the period is P=2*1=2.
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yx,t) t=0 yx,t) t=.2 yx,t) t=.4

0.1 0.1 0.1
0. 05 0. 05 0. 05
’ X ’ X ’w%x
-0.05 T T -0.05 0 T -0. 05 Lo
-0.1 -0.1 -0.1
y(x,t) t=.6 y(x,t) t=.8 y(x,t) t=1
0.1 0.1 0.1
0. 05 0. 05 0. 05
1 760. X T 20.40.60.8°1 X .20 20.60.8 1L X
o o TEIEILS g g CEDTEL g g OBO T
-0.1 -0.1 -0.1
Figure2

The wave has period 2 (2L/c in general), and its envelope is a tilted rectangle (see figure 3). The wave reflects from the
boundaries with opposite amplitude to the ingoing wave. But this envelope probably doesn't look much like the envelope
you sketched of the rubber band. High speed photographs of plucked strings show that real strings do look like your
solution -for a little while. But real strings are more complicated than the simple mathematical one we solved here. (there
is actually quite a large literature on mathematical models of more realistic strings, sponsored in part by the makers of
keyboard synthesisers).

y (X, t)
0.1
0.05/
0.2 0.4 0, 0.8 X
-0. 05/
-0.1
Figure3

When a long string is plucked with small amplitude, it looks briefly somewhat like Figure 2. But in less than a second it
looks more symmetric than the tilted rectangular shape. If struck with large amplitude, the string seems to never look like
Figure 2. There are two explanations for these observations. First, at finite amplitude, there is dispersion (and correspond-
ing coupling to longitudinal waves along the string), so the phases of oscillation are quickly randomized. In Figure 4 we
plot the same time series as in Figure 2 with random phases shdfd2d to each Costt) term.
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Figure4

Second, there is damping (both in the band and at ends- fingers are flexible), and the higher modes damp much faster than
the fundamental. So at the end, all one sees is thexptefm oscillating.

(d)
With L=1, P,/u=1, Tu=c?>=1, and¢=1/7 we have from the solution in part (a)

00

t) = 2 ! Si 7)Si t) Si
y (X, )_;Zﬁ in(nz/7) Sin(nxt) Sin(nxX) (113)

n=1
The wave has period 2 (2L/c in general), and again the 7th harmonic has zero amplitude if the string is struck 1/7 of the
way along its length. So the 1/7 position is optimal for avoiding self-dissonance for both plucked and struck (by infinitely
light hammers) strings.

(e)
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(x,t) t=1.05

Figure5b

The plot shows that the struck rubber band starts as a delta-function pulse which becomes a spreading square-wave pulse.
This spreads until its width is 2/7, and the left edge of the pulse hits the left boundary.

Then the pulse starts moving as a unit to the right, until it hits the right boundary, when it squashes and reflects as a nega-
tive amplitude pulse, and the cycle repeats. Notice that the harmonics decay only as 1/n inst&atbiothey plucked

case, because the wave pulse is discontinuous. Eyes are not fast enough to see any of this on a rubber band.

IO = i

2.5

NN

1.5

0.3

D_.\__’“‘U.U"‘,v....l....,....,....,
’ nz 0.4 0.6 0.8 1

Figure 6
() (1 point extra credit)

The time it takes the pulse of Figure 2 to reflect off the left wall and pass the hammer position at 1/7 (leaving 0 amplitude

at hammer position) is
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11 —1 1 =0.55ms Vo
7 ¢ 7f 7 2616Hz )

Since the real hammer stays in contact for 2ms, it is clearly a very BAD approximation to treat the strike as an impulse in
time as we did here: the hammer really changes the length of the string and the left boundary condition to that of a driven
string for 1/2 of a wave cycle. So the string is not at y(x,0)=0 and dyxdFwhen the hammer releases, as we assumed.

Problem 5 (3x4 points)

2 L 1 2L
7 cC

Uxx + Uy =0
ux,)=u@,y)=u(l,y=0 (115)
ux, 0)=fx)
UK y)= > G (0 Sin(nry) (116)
n=1
(a)
We require
uil,y=0 (117)
That is
0= Z ch (1) Sin(nrry) (118)
n=1

Since the eigenfunction are complete and orthogonal, we have

1
(D)= Zf Sin(nzy)0dy =0 (119)
0
Similarly, ¢,(0)=0
(b)

Suppose that substituting our guess into the PDE is valid, we get

Z ¢ (X)) Sin(nzy) — Z cn (X) (N7)% Sin(nzy) =0 (120)

n=1 n=1

Since the eigenfunctions are orthogonal we find

ch"—(nm?c, =0 (121)
(©)
The solutions to the ODE in part (b) are of the form

Ch=Ane"™* +B,e "* (122)

Fitting the initial data gives

A,+B,=0

An enﬂ + Bn e—nﬂ — 0 (123)
The determinant of this matrix is
o _ g7 (124)
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Which is non-zero, so the matrix is invertible and hence the only solutiggFi8,=0. So the only solution is the trivial
solution

ch=0 (125)
which gives the non-physical solution

u,y)=0 (126)
(d) (optional 10 points extra credit)

Multiplying the PDE by Sin (i y) and integrating gives

1 1
[f u(x, y)Sin(nry) dy] +f Uy (X, y) Sin(nzy)dy =0 (127)
0 X 0
Recall that we had
UK, y)= > G () Sin(nry) (128)

n=1

By orthogonality the coefficients are

1
Ch (X) = Zf ux, y)Sin(nny)dy (129)
0
So we have
1 1
> (X)) + f Uy (X, ) Sin(ny)dy =0 (130)
0

Integrating by parts twice gives

1
f Uy (X, y) Sin(nry)dy = (uy, Sin(nry)—unn Cos(mry))y:1 -
0

L (131)
(uy Sin(nwy) —unnx Cos(mry))yzo —(nn)? f ux, y)Sin(nry)dy
0
Using the boundary data and definition of the coefficients gives
! 1
f Uy (X, Y) Sin(nzy)dy = f (x) nz — (n7)? 5 &0 (132)
0
Inserting this into our equation
Cn " (X) — (N2 ch (X) = =2 N f (X) (133)

Here we see the essential difference between the "pluggin in" approach in part (c) and the integrating approach. The fact
that the eigenfunctions are all 0 at y=1 means that the sum will not be uniformly convergent near y=1 and hence term by
term differentiation of the sum isn't permissable. The correct approach used here gives a non-trivial forcing term.

Through either the use of Green's functions or variations of parameters this ODE can be solved to find the result stated in
the problem set.
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