ACM95/100b
Problem Set 5 Solutions
02/1604

Problem 1 (10 points)

The Gram-Schmidt procedure is as follows. Given a space, X, defined as the span of a given basis

X = spanfvy, Va, ...} (1)
and given a real inner product on this space

Vi, vj) (2)
an orthonormal basis for X can be formed as follows. First set
Vi
= 3
L Tl ®)
Then define
bn =A(Vn = (Vn, bl) bl = oo = (Vn, bn—l) bn—l) (4)
Finally, choose A so thd, has unit norm:
1= lball? = A% (IVall® = (Vo, b1)? = ... = (Vn, Bp1)?) (5)
We then iterate this process.
Let's apply this procedure to the given set of functions S
S=1{1,x, %, %, ..} (6)
with the definition of a real inner product on these functions
1
f, 9, = f f () g(x)w(x)dx
1 (7)
wx)=1/V1-x2
By the definition of the inner product, the norm of a function in this space is
1 (F)?
fll, =+, ), = —=—d 8
IFlly =~/ (F. ), f_lm X (8)
The first orthonormal polynomial will be
To () = t 1 9
R T ©)
The next orthonormal basis element will be of the form
T =AX=(To, X)y To) (10)
Simplifying this gives
T, = AX (11)

We now choose A to givE; unit norm

Vs
1=lAxll, = Al | 5 (12)
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The sign of A is arbitrary, we choose it positive and set

Ti(X) = \/% X (13)

The third orthonormal basis polynomial will be of the form

Ty =A% = (To, X3, To — (T1, X3, T1) (14)

Inserting the expressions for the other polynomials and simplifying gives

T,=A (x2 - %) (15)
We then choose A to give this function unit norm
1 Al [7
=afe- 2, - B3 @

The sign of A is arbitrary. We conclude

1
To(X)=,/—

b
T1 ()=, 2 X (17)

m

/2 2

To,X)= .| — (2x° =1

m

Problem 2 (20 points)

A second order ODE is in Sturm-Liouville form if it is written as

;ps(>;)ssl');q(X)y+M(X)y=0 (18)

We'll have a regular Sturm-Liouville eigenvalue problem if the boundary conditons are of the form

Bry@+p2y'(@=0 (19)

Bzy®+Bay (0)=0
We'll have a singular Sturm-Liouville eigenvalue problem if p(x) vanishes at an endpoint and we have conditions of the
form:

p@=0
ly @] < e
and/or (20)
p()=0
ly (b)] < o
We'll have a periodic Sturm-Liouville eigenvalue problem if we're given boundary conditions of the form

y@=y(b)
21
y'@=y'(b) (21)
A general second order ODE of the form

fy"+gy'+hy=0 (22)
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can be put into Sturm-Liouville form by the use of an integration factor

(ef%”y')wfﬂef%dw:o (23)
(a)
X2y"+xy'+(K2x2-n?)y=0
O=sx=c
24
y(©=0 &)
ly (O] <o
We rewrite the ODE in Sturm-Liouville form using an integration factor
n2
(Xy)' = = y+k*xy=0
p(x) =X (25)
qe) = -n?/x
W (X) = X

Because p(x) vanishes at one of the endpoints, p(0)=0, and because of the boundary condition at x=0, this is a singular
Sturm-Liouville eigenvalue problem.

(b)

y"+k?y=0
O<x=2n
y(@©) =y@2n)
y' (O =y'@2n)
This ODE is already in Sturm-Liouville form with

(26)

px)=1
qx) =0 (27)
w(x)=1

The boundary conditions make this a periodic Sturm-Liouville eigenvalue problem. If k=0 then setting y(x)=c for any
constant c gives a solution. So k=0 is an eigenvalue with eigenfunction y(x)=1

(©)

y"+k?y=0

O<x=<1

y@© =0

ydh=1
This is the same ODE as in part (b). The boundary condition y(1)=1 makes this not a Sturm-Liouville eigenvalue problem.
This can be seen as follows. Recall from lecture that with the S-L operator

(28)

Ly=(py")" +qy
the follwing equality can be produced using integration by parts

Lf,o-F Ly=@pf'-g'phH,,-@pf'-7'phH,_, (29)

If the boundary conditions are prescibed such that the right side of this vanishes, then th operator L is said to bat self-adjoi
and we have a S-L eigenvalue problem. For the present problem the boundary conditions give

Lt o-tLg=@gpf-g'ph,, -@pf'-g'ph,,=FD-9'D (30)
Since the right side doesn't vanish, this problem is not a S-L eigenvalue problem.
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(d)

(1-x?)y"-2xy'+dy=0
-1=<x=<1 31)
y(=1),y@),y'(-1), y'(D)finite

No integrating factor is needed to put this into Sturm-Liouville form, we simply collect terms

(L-x)y)' +1y=0

p(x) = 1_X2 (32)
qx)=0
w(x)=1

p(x)=0 at both boundary points x=t1. This fact, together with the boundary conditions, makes this a singular Sturm-
Liouville eigenvalue problem.

(e)

L-x®)y"—=xy'+1y=0
-1=<x=<1 (33)
y(=1),y@),y'(-1), y'(D)finite

Use of an integration factor gives

_ A

(\/1—)(2 y) +my:0

P =V1-x2 (34)
qx)=0

wx)=1/V1-x

p(x)=0 at both boundary points x=t1. This fact, together with the boundary conditions, makes this a singular Sturm-
Liouville eigenvalue problem.

Problem 3 (15 points)
(a)

If f is an element of the space spanned by an orthonormal;3e¢hén there are unique coefficiessuch that

00

f=> v (35)

n=0

Since the basis is orthonormal we have

(, vi)=[ianvn.vi]=ia1(vn.vi)=a (36)

n=0 n=0

So f can be written

00

f= Z(f, V) Vi (37)

n=0
(i)

As given in class, the normalized Legendre polynomials are

1 [3 (51
{lo, I1, 12, ..} = {ﬁ' \/E X, \/—; E (3X2 -1, } (38)

Printed by Mathematica for Students



defined on -¥x<1 with an inner product weighted by w(x)=1. If f(X) is expandable in terms of these functions we write

F00= > (1)1, (39)
n=0

For our given f we calculate

1 1 2V 2
f,l = l—X2 —_ dxX = ——
f, lo) L( )\/2 3

1
(, I1)=f(1—x2) ExClx=o (40)
1 V2
1 5 1 2 |2
_ 2 Q2 - 2 _ L
(f,lz)—L(l x?) /2 2(3x Ddx=-7 /5

So we write:

f(x):zgz |0—§ /§|2+... (41)

By plugging in the expressions fty andl, we see that f is exactly equal to the sum of the first two non-trivial terms
written above. So we may write

2v2 2 |2
= - == 42
fo==—F—lo-3z " (42)
By orthogonality of the Legendre polynomials we see from this expression that
2V2/3  ifi=0
f, 1) = -2+/2/5/3 ifi=2 (43)
0 otherwise

So orthogonality assures us that the remaining coefficients should be zero.
(i)

As found in problem 1, the normalized Chebyshev polynomials are

{To, T1, Ty, ...}={\/§, \/—gx, \/—g(sz—l), " (44)

defined on -&x<1 with an inner product weighted by W(x):\il— x2 . If f(x) is expandable in terms of these functions
we write

F00=>" (T Ta (0 (45)
n=0

For our given f we calculate
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! 1 1 Vr
_ _ 2 - -
(f,To)—L(l O\ 5 s =
1
(fle)zf(l_XZ)ﬂEX;_dX:O (46
-1 T \/1_)(2
1
_ 2 /E 2 _ 1 __ 1|z
(f,Tz)—j:l(l X%) - 2xc -1 \/1_)(2 dx = > 5

So we write:

f(X)ZgTo—% '%T2+ (47)

By plugging in the expressions fdp andT, we see that f is exactly equal to the sum of the first two non-trivial terms
written above. So we may write

T 1 |
f(X)=\/TﬂTo—E %Tz (48)

By orthogonality of the Chebyshev polynomials we see from this expression that

Vo /2 ifi=0
G 1)= _Vrj2/2 ifi=2 (49)
0 otherwise

So orthogonality assures us that the remaining coefficients should be zero.

(b)

If an element of a real inner product space f is expandable in a series of orthonormal basis elements, then the expression
derived in part (a)

f= Z (f, Vn) Vn (50)
n=0

can be used to find an expression for the norm of f.

IFIP = (E, ) = > vV, D (Vi) Vin | = D D vin) (Vi) (Vi Vi) = D (F, vi)? (51)
n=0 m=0

n=0 m=0 n=0

written another way, if f is

f=> v (52)
n=0
then
RIS (53)
n=0

Specifying this to function spaces we have

2

b o b
f F X)W (X)dX = Z[ f f (X) Vi (x)w(x)clx] (54)
a =0 \Ya

Printed by Mathematica for Students



These results are known as Parseval's equality (here specialized for orthonormal sets of basis functions rather than more
general orthogonal ones)

We now verify Parseval's relation for each of the expansions in part (a).

(i)

We found
22 2 |2
—1-x2= N el 55
f(x)=1-x 3 lo 3V E I, (55)
The norm of fis
2.2 1 2.2 16
11— =f<1—x) dx= = (56)
. 15

The sum of the squares of the coefficients is the same
00 \/_ 2 2
2v2 2 |2 16
2| = —— =] == 57
n;a‘ [3]+[3\/5] 15 &0

(ii)

We found
Vr 1 bis
=T = [ Z 58
1-x 5 To > > T (58)
The norm of fis
121 —flﬂ—xz)z == (59)
-1 V1-x2 8
The sum of the squares of the coefficients is the same
— 2 2
= Vr 1 |« 3r
2 _ | X2 _— | = =22 60
D [ | *-5v3 1 =% (60)
n=0
Problem 4 (30 points)
1
y+?f(x)=0 (61)
y©=y(L)=0
(a)
G"= Fo d (X
B AR (62)
GO=GL)=0
Since the forcing is zero for all x exceptécthe solution will be of the form
a+bx O0=x<
Gxlo = ¢ (63)

c+dx &é<x=L

We choose the coefficients to satisfy the two boundary conditions
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0=G(0|&=a (64
0=G(L|&=c+dL

This gives
b x O=<x<¢
dix-L) &<x=<L

The Green's function will be continuous with a discontinuous first derivative. The magnitude of the jump is given by

Gx|&= (65)

) G +E . G+E F F
Gy 1H-CE 1H= Ilmf G (X[ dx = Ilmf — 2 (X - dx=—— (66)
-0 ée -0 ée T T
This condition together with the continuity condition gives
Fo
d-b=-— (67)
bé=d(¢-1L)
Solving these we find
F
2 (L-6x 0=x<
GxlH= o y ¢ (68)
- L=-x¢ &<x=L
(b)
f(x)=ung (69)

By the principle of superposition, we expect that our solution will be found using the Green's function found above with
F():l

L
y<x>=f G| Of (@) dé =
0

(70)
Gx|Hdé = (Xled L xd)—”g(L_X)X
ﬂgj; (|§)§—ﬂ9£ﬁ(—)§§+£ﬁ(—§) f—T
Checking this we find
y©=y(L)=0
--_(M)--__ﬂg__f(_“ (71)
Yy =727 ST T
So it is indeed the solution.
(c)
y"+4ay=0
72
y@©=y(L)=0 (72)
This linear constant coefficient ODE has solutions of the fdfm Plugging this in gives
rP+1=0 (73)
So the general solution will be
y=Ae VX LB VX (74)

To determinel (which could in principle be any complex number), we apply the boundary conditions

Printed by Mathematica for Students



0=y =A+B (75
O=y(L)=Ae ML 4 Be ML

This system has non trivial solutions, A and B, only if the determinant is zero

12 1/2
VL _ 0L (76)

This is easily solved if we rewrite it

2L _ p2nai (77)

So we find

(2

L
nmXx

8
Yo = A, Sin(T) %)

This was a regular Sturm-Liouville eigenvalue problem with weight function w(x)=1. So the appropriate inner product is

L
(, g)=f f () g(x) dx (79)
0
Note that the eigenfunctions are orthogonal
L o naxy . max .
j; Sln(—L—)Sln(—L—)dx=0lfn¢m (80)

To make them orthonormal, we need to choosé\th® give them each unit norm

L nmx L
1=|lynl?=A Zf Si (—=|dx =An? = (81)
n n 0 ( L ) n 2

So our orthonormal set of eigenfunctions is

Y=+ = Sin(—=—) (82)

(d)

Plugging in the given constants to the results of parts (a) and (c) gives

. 6x/7 0=x<1/7
G = 1-x)/7 1/7<x=<1 (83)

Yo = V2 Sin(nzx) (84)

The easiest way to expand the Green's function in the eigenfunction basis is to use the result derived in problem 3a

G= (G, YV (83)

n=1

The inner product is given by
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1
(G,y@:fG(x)x/ESin(mrx)dx:
0

6v2 YV V2 ! , V2 . nx
_7_£ xSln(mrx)dx+Tj;/?(l—x)Sln(nnx)clx_ 22 S|n(—7—)

So we have:

(86

G=:Zlan Yn =Z nzznz Sin (n7_7r) Sin (nxx)

The first 9 coefficients are

n 1 2 3 4 5 6 7 8 9
a, x10% | 621.7 [280.1|155.2 |87.31 |44.81 |17.27 |0 |-9.714 | -13. 83

Testing Parseval's relation.
The norm of G is

1/7

(6x/7)zclx+fl(l_x)2 12

1
GlI*= | GPxdx= dx= -
Gl j; ) 7 5401

The difference between this and the sum of the first 9 squared coefficients is very small

2
12 (V2 _ g nn 6
m - 24 [ 72 Sll’l[—7—]] =5.191x 10

Optional Part
Settingé=1/n gives

1-LHx 0=x<i
G(X) = n n
1-x+ Z<xsL

Ym = V2 Sin(mzx)
The coefficients of the expansion are given by

am:
(y G):f%(L—i)xx/E Sin(mnx)dx+f1(l—x)1\/§ Sin(max)dx =
m 0 n 1 n m2 72

When m=kn for integer k we find

V2 Sin(k )
8n =&n=——75—=0
(knm)

(e)

We plot the exact solution (blue) versus four approximations (red)
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Y 3 terns versus exact Y 10 terns versus exact

0.12 0.12
0.1 0.1
0.08 0.08
0. 06 0.06
0. 04 0. 04
0.02 0.02
0.2 0.4 0.6 0.8 1% 0.2 0.4 0.6 0.8 1%
Y 30 ternms versus exact Y 100 terns versus exact
0.12 0.12
0.1 0.1
0.08 0.08
0.06 0.06
0. 04 0.04
0.02 0.02
0.2 0.4 0.6 0.8 1FX 0.2 0.4 0.6 0.8 1%
Figurel

The approximation becomes nearly indistinguishable from the exact solution for n>10 terms. We now plot the
residual=approximation-exact for these four approximations.

terns
resi dual -3
10
0.01}
/\ -
WA NP\ y
/02 0.4 0.6 0.8 1 —— 100
-0.01¢
-0.02¢
-0.03!

Figure2

This reaffirms that for n>10 terms the approximation is very good. From the previous two plots, it appears as though the
maximum residual, for a given number of terms, occurs at the point where G has a discontinuous derivative, i.e. x=1/7.
Below we plot the absolute value of the residual at x=1/7 for n=1 to 50 terms.
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|residual | x=1,7

0.08
0.06
0.04
0.02 ¢+
L L L L L L L L L L L L L L L L L L L L L L t erns
10 20 30 40 50
Figure3
The maximum residual appears to vanish-asn
Problem 5 (20 points)
(a)
1 1/4<x<3/4 9
0 otherwise (92)
As in problem 4
y= Z (Ys Yn) Yn (93)
n=1
The inner product is given by
1 34 2
, Yn) = f y(X)V2 Sin(nax)dx =2 f Sin(nzx)dx = \/— 1-(=D" Cos(ﬂz) (94)
0 1/4 nn 4
This vanishes whenever n is an even number. So we might instead write
2z =V2 Sin(2k-1) %)
o 2y2 Cos( k-1 (95)
& = Rk-Dn 4 )
So we have:
= = 4 2k -1
y=Zaka= —Oos(ﬁJSin((Zk-l)nx)
= = k-1) x 4

The first 9 coefficients are
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k 1 2 3 4 5 6 7 8 9
ax x10% | 6366 | -2122 | -1273 | 909.5 | 707.3 | -578.7 | -489.7 | 424. 4 |374.5

Observe that these are decreasing more slowly than the coefficients found in problem 4. The norm of y is

1 3/4 1
W= [y oodx= [ 1ax=3 (96)
0

1/4

The difference between this and the sum of the first 9 squared coefficients is

L _(_2v2 Cog N1 2—1125 102 97)
E_; 2n-Dn of =] =125

n

This error is four orders of magnitude larger than that found in problem 4 resulting from the slower decay of the coeffi-
cients. The slower decay is a result of the discontinuity in y(x).

(e)

We plot the exact solution (blue) versus four approximations (red)

y 3 ternms versus exact Y 10 terns versus exact
1 1 /\v N
0.8 0. 8
0.6 06
0.4 0.4
0.2 0.2
0.2 04 06 08 4" 02 0.4 0.6 08 1 X
Y 30 terns versus exact Y 100 terms versus exact
1 LA i 1 Iy i
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
"2 0.4 06 078 1% 0.2 0.4 0.6 08 1°%

Figure4

Notice that even for n=100 terms, the error at the discontinuity is substantial. We now plot the residual=approximation-
exact for these four approximations.
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resi dual — 3
0.4+ 10
— 30

— 100

Figure5b

This reaffirms that even for n>100 the error is non-negligible From the previous two plots, it appears as though the maxi-
mum residual, for a given number of terms, occurs at the points where y is discontinuous, i.e. x=1/4 and x=3/4. Below we
plot the absolute value of the residual at x=1/4 for n=1 to 50 terms.

|residual | x-1/4

0.4
0.3

0.2}

‘ : : : : terns
10 20 30 40 50

Figure 6

This residual appears to approach 0.5 -ason This was expected since Sturm-Liouville theory guarantess that our series
should converge to (1+0)/2 at x=1/4 (convergence in the mean). There is another interesting feature of our plots. It
appears that the approximations have a maxima near x=1/4 and x=3/4 that is larger than 1 and remains so for all n. This is
known as the Gibbs Phenomena. It is seen easily from the following zoomed in plot for n=30, 100 and 200 terms.
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y G bbs Phenonena

1 ey

0.8

0.6}

0.4

0.2+

' e ANy
:/ 0.22 . 024 |/ 0.26 0.28 0.3

Figure7

As n increases from 30 to 200 the height of the overshoot doesn't diminish but the width of the peak narrows.
(b)

y = 1/Sin(n x) (98)
As in the previous part

Y= 0 Yn)Yn (99)

n=1

The inner product is given by

! : = (' Sin(nzx) V2 nodd
y Yn) = ZS d = 2 —d =
(Y Yn) foy(X)«/_ innax)dx =+ fo s = 6 neven (100)

See Appendix 1 for how this integral is calculated. The first 9 non-trivial coefficients af@all.414... These do not
decay. For this reason we expect the Parseval relation to be void. Indeed, the norm of y is infinite

1
1
2_ — = dXx=o 101
Il \[;Sinz(nx) X (101)

Since y isn't square integrable, we shouldn't expect that our eigenfunctions can approximate it. Sturm-Liouville theory
guarantees convergence in the mean of series of eigenfunctions to piecewise smooth functions. That is, if f(X) is continu-
ous at x=a then

N
,Liggo; (f, yn)yn @ =f @ (102)

and if f has a discontinuity at x=a then

o f@)+f@)
lim nz; (£, yn) Yo (@ = ——5—— (103)
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y(x) is not piecewise smooth since

lim1y (I = lim [y ()] = e (104)

So we are not guaranteed convergence in the mean. The lack of convergence is seen readily by plotting n=3, 10, 30 and
100 terms.

Yy 3 terns versus exact y 10 terns versus exact
10 10
8 8
6 6
4 4
2 2
0.2 0.4 06 08 1% 0.2 0.4 0.6 0.8 1°*%
y 30 terns versus exact Y 100 terns versus exact
10 10
| |
6 M J‘
| \
2 Ml!“‘“‘mm | [l
”“ e
1 X% T 0.2 04 06 08 17~
Figure8

Possible bonus stuff(?): show that even thoygh)=y,(1)=0 the series diverges "near" x=0 or x=1.
The Fourier sine series we've constructed is summable in some sense.

y:ZZSin((Zn—l)nx)=2Im[e‘””Zez"””] (105)

n=1 n=1

The Nth partial sum of this is easy to find since the series, when written in the latter form, is geometric.

N 2rxi _ 2(N+Daxi Sir? (N
— —nXi 2naxi | — —rxi © € _ In" (N7 x)
SN —ZIm(e néle ]—ZIm(e IS )—2 Sinrx (106)

This doesn't have a well defined limit as>i, but we can still learn from this expression a few things about the behaviour
of the sum. Firstly, the sum remains finite unless x=0,1. By L'Hopital's rule and some trig identitie8,ves kave

Sir® (N7 x) 2Nz Sin(Nax)Cos(Nmx) Sin(2N 7z x)

: 5 (107)
Sin(r x) 7 Cos(r X) Cos(m x)

Notice that for any small non-zero values of x, we can always choose N so large as to make this last expression as large as
we want. So despite the fact that0) = 0, for x "near" 0 the sum is arbitrarily large. For example, let x=1/4N and let N
be large:

Sir® (N7 x) Sir? (/4) 1 4N
= = - —

Sin(n x) Sin(z/4N)  Sin(n/4N) n
A similar phenomena occurs at the other boundary point x=1. The bottom two plots in figure 8 demonstrate these results.

Sy (x)=2 - o (108)

Appendix1: Calculation of atricky integral in problem 5
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1 g WAV
I = f Sinmxx) )
o Sin(mx)

First observe that using some trig identities gives

| fl Sin(rx) J fl
1= | =———dx=|] ldx=1
o Sin(mx) 0

. (110)
L' Sin2nx) 1
P =f ———  dX =f 2Cos(rx)dx =0
o Sin(mx) 0

We will now prove by induction thad =0 andl,_1;=1. Note the following trig identity

Sin((n+ 2) 7 x) — Sin(nzr x) = 2Sin(r X) Cos((n+ 1) 7X) (1112)
This gives

1
In+2—ln=2f Cos(n+ 1) xx)dx =0 (112)
0

Hence, by induction, all the odd indexed integrals are 1 and all the even indexed intergals are 0.
Appendix2: afinal interesting footnote about the sum in problem 5

Observe in figure 8 that the partial sums appear to oscillate about the function which they supposedly represent. We can
make this mathematically precise in two ways.

Method 1: The Cesaro Sum

As we just mentioned it seems that the partial sums converge to the function in some average sense. The average of the
partial sums is known as the Cesaro sum

1 & 2 N

Cesaro Sunx N ; S, = NSneo ; Sir? (nzx) (113)

Using trig identities we can write this as
2 N 1 — @2nwxi

N Sin(r X) Re(; 2 ] (114)

This is easily summed
1 Sin(N 7 x) Cos((N + 1) 7 x
' 3 ( ) : (( ) 7T X) (115)
Sin(zx) N Sir? (7 x)

Letting N> gives the original function our series is supposedly representing. So the Cesaro Sum of our series converges
to the appropriate function uniformly.

Method 2: Generalized Riemann-Lebesgue Lemma
Pick any square integrable test function f(x) with compact support on [0,1] and compute

! 1 Sir? (N7 x)
L&(x)f(x)dx:ﬁsz(x)dx (116)

Since SiA(Nzx) is periodic with a wave number that becomes infinite asoNby a generalization of the Riemann-
Lebesgue lemma we have

, L Sir® (N7 x) — 1
ll\llmo\[; me(x)dXZZSWF (ﬂx)\f; Wf(x)dx (117)
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where the overbar denotes the average over one period. This average equals 1/2, so evidently

1 1
. 1
ll\jILTZo\[; SN (X)f (X) dx = \[; W f (X) dx (118)

In this peculiar sense, the partial sums converge to the appropriate function (similar to the way a delta sequence converges
to the delta "function”).
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