ACM95/100b
Problem Set 4 Solutions
01/2904

Problem 1 (10 points)

Delay differential equations are important in control theory and population biology. Suppose thattyr -1<t<0 and
subsequently satisfies

dy ()
Cdt
Notice that the rate of change of y depends on its value at a previous time (e.g. rate of population growth depends on the
number of babies born 18-36 years ago; because of finite neuron speed and processing time, you brake or accelerate your
car about 1/10 second after the visual inputs motivating the changes).
Show that the Laplace transform of y(t) satisfies:

+2y(t)-2yt-1)=0, t=0 1)

Yo (0 +2¢7 [%etyg (hdt

2)
v 2rs—2¢°

Solution to Problem 1
dy ()
— +2y(-2y(t-1)=0, t=0 €)

y®=yo®for —1=<t=<0
Transform each part of the equation:

Liyml=Y
dy (t)

L=

Llyt-1]= (4)

00 0 00 0
f y(t—l)e‘s‘dtze‘s[f y(X)e‘SXdX+f y(x)e‘sxdx]ze‘s[f Yo (x)e‘sxdx+Y]
0 -1 0 -1

Plugging these into the equation gives:

=SY-y(0 =sY-yo(0)

0
(s+2-2e°Y -y (0)—2e‘3f Yo(X)e3*dx =0 (5)

-1

Solving for Y gives:

Yo (0) +2¢7S folyo (X) e S*dx
Y = =
2+s-2eS

(6)

Problem 2 (2x7 points)

Let f(x) be periodic, with period L, so that f(x+L)=f(x). Define
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_f forO<x<L
-0 forx > L

g (x) (7)
and let G(s) be the transform of g(x).

a) Show that the Laplace transform of f(x) is

F(s) = 1?5)‘“ fors>0 (8)

b) Use the result of (a) to find the Laplace transform of the square wave of period L defined by

1 forO<x<L/2 9
0 forL/2<x<L (9)

Solution to Problem 2

a)

f(x)=

Laplace transform f(x) from the definition and break the integration interval into infinitely many intervals of length L

00 €9 (n+1) L
F(s):.[j[f]:f f(t)e-stdt=2f f(t)estdt (10)
0

n=0 v nL

Now make the change of variable in each integral t=x+nL and use the fact that f(x+nL)=f(x)

Zf f(x+nL)es*nb dx:f f(X)e_SXdXZe_SnL (11)
n=0 V0 0 n=0

If Re(s)>0 the remaining sum is a convergent geometric series whose sum we know exactly

1 L
—SX
Te_SL jc; f (X) e dx (12)

Now transform g(x) from the definition:

0 L
G =L[g]= f gXx)e 3*dx = f f(X)eS*dx (13)
0 0

Observe that these two results give

G(9

F(s) = AL for Re(s) > 0 (14)

b)

1 forO<x<L/2
T 0 forL/2<x<L

The corresponding g(x) is defined by:

f (x) (15)
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X_1‘(x) forO<x<L 1 forO<x<L/2 (16
g(x) = 0 forx>L ~ 0 forx>L/2
o0 L/2 1— g-SL2
G(s)=.£[g]=f g(X)e‘“%lx:f e SXdx = — a7
0 0
Plugging this into the formula in part (a) gives
1-¢SU2
= 1-— -sL/2 1
F=-—° = —° = (18)
l-est s(l-est) s@+est?)
An alternative way to do this problem is to notice that
f () =i(—1)” Hix- n—L) (19)
2
n=0
Then transform term by term using a shifting theorem and the known sum of a geometric series
o -snL/2 1
F(s) = 1 £ =
©) ;( ) s NEEpITy (20)
Problem 3 (15 points)
The Heaviside expansion theorem. If a transform F(s) can be written as a ratio
F(s = G 21
T (21)
where G(s) and H(s) are analytic functions, and H(s) has only simple, isolated zess at s=
a) (8 points) Show that the inverse transform is for sufficiently large t (see part(b))
1,6 G (%)
f () = L 1=\ — KT st
O=LHaE) = Lhe © 22)

b) (4 points) Consider G(s)=exp(-3s), H(s)=s-2. For what t does the theorem of part (a) apply and why? [Hint: consider
Mellin inversion contours]

¢) (3 points) Give a more interesting example of the use of this result (one was given surreptitiously in class, which you
may use if you recognize it, or you may invent one yourself).

Solution to Problem 3
(@)

1,60, 1 f“imG(S) st
ft)y=L {H(S)}_Zm' T ds (23)
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We will assume that f(t) is a piecewise continuous function of exponential order. As shown in previous problem sets and in
the class notes, the transform of such a function, G/H,~ilas Re(spe. It will be helpful to extend this and assume

that G/H»0 as|g|—o.

Assume that either H has finitely many roots or that if it has infinitely many, the real parts of those roots are bounded from
above. This allows us to pick c to the right of all the roots of H(s). Then use the following contour whichlye call

O

Figure 1

By the Residue Theorem we have:

ZnuZRes(H(S) , )_Fljmofﬁ—g%es‘ds=

I'r

(24)
c+iR G(s iR G(s c—iR G(s G(s
lim f —(les‘ds+f —(les‘ds+f —(les‘ds+ f—(les‘ds
Rool Jo g HI(S) crir H(S -r H(® s H(9
R
The horizontal portions vanish assR. This is easily seen from the following bound:
iR G
| A etagseet wax |20 25)
crir H(S SE(uR c-HzR) H(s)

We have previously assumed that G so this maximum vanishes. We do likewise for the other straight horizontal part
of the contour. For the semicircular part we have the following bound

o .,
fH(s)e d
Cr

Since Cosine is non-positive on this interval and since the maximum of G/H is assumed to vanish, this integral vanishes by
Jordan's Lemma. We conclude:

37/2 G(R i6 ; ; 37/2
— f ( e ) euQQRBthg eRtC0§ do (26)

2 H (Re”)

RMaxG
<
- ¢ IH

. C-HZRG(S) S G S
IlefR He tds= ZnuZRes( ‘sk) (27)
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Since the roots of H are simple we have

G & .\ . 5-30G©Oe"  G(s)ex!
Rei 8=l TG T e (28)
by L'Hopital's rule. Hence:
ey f””G(S) st yo_ X0 G o
fo=L {H(S)}_ 2708 Jop HEO © ds= - H(s) © (29)

Extending this result to cover the function found in the next part of the problem.

Note that our result still holds even if G/H were equal to some function with an exponentiaPinQ):e 2% where P/Q
vanishes for large s. G/H is no longer a function which vanishes for |grge the contouCr unless we put certain
restrictions on t. Reconsider the bound on the semicircular part:

P(9
Q)
Cr

37/2 i0 v
St P(R? ) Riel? &R 3 gg
w2 Q(Re')

P 37/2
< RMax || f gR-AC g (30)
Q /2

By reasons explained previously, if we require t>a, Jordan's lemma applies. Now reconsider the bound on the horizontal
parts

iR
PE ST g9 < et Max |——P © (31)
crir Q(S) seR.cHiR) | Q(9)
Again, this vanishes. So, if G/H is of the form
G PO .
) ¢ 32
H( HZ;‘ Qi (32)

With P; /Q; vanishing for large s an@; having only simple roots all of which have real parts bounded above. Then our
result is still valid for all t >Maxq;).

G ()
f(t)= , ex! fort > Max(a) 33
; H'(s) (33)

b)
Method 1

Part (a) tells us that

G(s1) st e® 2t _ 2t6
~— et'=—e =e P fort>3 (34)
H'(s1) 1

f®

Method 2
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From the shifting theorems we know:

-3s

-2

|=H@t-3)e*"®

So our estimate in part (a) is only valid for t>3.
Method 3
Suppose we try to invert the function using the Mellin inversion formula:

1 C+i 0 6—35 1 C+i 0 1
f)= Stds= f st-3) gs
© 2mzfc s-2° 278 Jo s S-2°

—i 0 i oo

Where ¢>2. We use the following contour:

0

Figure 2

The residue theorem gives:

1 1
T St3 - 9 S(t-3) — ;216
fS—Ze ds ZHERGS(S_Ze ,2) 2nie

I'r

The integral on each of the horizontal parts vanishes. For example

iRo1 o1 : c 1
f _ es(t—S) dsl = f - e(x+ur)(t—3) dx Sf - ez(t—S) dz— 0
crir S—2 ¢ X+iR-2 o lZ+iR-2|

The integral on the semicircular part of the contour can be bounded:

Printed by Mathematica for Students

(35)

(36)
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1 S
t=3) g
fs— 2 ¢

Cr

37/2
f;;/Z

iRe'?

Rei? -2

ER e (t-3) do

371/2 R

37/2 R
f : eR(I—3)COSQ 4o Sf
/2 IRei? — 2| 2 R-2

=<

@R (t—3) Cos6 do

(39

Since Co9 is negative in this interval, the integral will vanish by Jordan's lemma provided that t>3. So for t>3 we have:

1 [oi® go3s 1 1
f 1) = Stds: s(t-3) ds = 2(t-3)
0= 5 fc s—2° 27i fs—z ¢ ¢ (40)

i
I'r

For t<3 we would use this contour

O

_R!
Figure3

and we would find f(t)=0 since there are no poles inside and the circular part would vanish by Jordan's lemma. So we
conclude:

f(t)=H(t-23) 2™ (41)

And we see that the estimate in part (a) only holds for t>3.

c) (3 points) Give a more interesting example of the use of this result (one was given surreptitiously in class, which you
may use if you recognize it, or you may invent one yourself).

Example from class

1
PO Seraen “2

As shown in class, the number and location of the roots of the denominator depends on the real pardretiag
s=a+hi we get two equations for the locations of the roots:

a+Ae @Cosb=0
b-2e2Sinb=0

When a>Max(1,lf]) the first equation can't have a solution since

(43)
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1

[Ae®Cosh<|A|le?<l<a

This means that all the roots are confined to R&{ax(1,InA|). In addition F(s»O0 for large s, so the result we proved in
part (a) applies to the inversion of this function:

- 1 G(s0) 1 1
fO=L1{FE) =+ eki=— 4 ) %! 45
L A Zk: sc(L+50) (49)

Problem 4 (6x4 points)

Find solutions, if they exist, for the following boundary value problems:

@y"+7°y=0, y0) =2, y()=0

(b y"+7°y=0, y0) =1, y(1)=2

©y"+9y=0, y(© =0, y(m=0 (46)
dy"+9y=x, y(0)=0, y(m=0

(e y"+9y=Sinx, y(0) =0, y(m=1

) y"+9y=Sinx, y0) =1, y(x)=-1

Solution to Problem 4

Each of these boundary value problems is of the form:

y"+&y="Ffx)

yO=A yL)=B
The homogeneous ODE will have solutions of the fefth Plugging this in gives two imaginary values for r@ which
lead us to a homogeneous solution of the form:

(47)

yh = @ Sin(ax) + B Cos(ax) (48)
Particular solutions are most easily found via the method of undetermined coefficients.
€)

The ODE is homogeneous, so the general solution is of the form:

Y =¥Yh = @ Sin(r x) + B Cos(r X) (49)

The boundary conditions require:

B=2
Aar (50)

So there is no solution.

(b)

The ODE is homogeneous, so the general solution is of the form:
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Y =Yh = @ Sin(r X) + 8 Cos(rr X)

The boundary conditions require:

B=1
B=-2

So there is no solution.

©

The ODE is homogeneous, so the general solution is of the form:

Y =Yh = @ Sin(3X) + S Cos(3 X)

The boundary conditions require:

B=0
B=0

So for anye, there is a solution of the form:

y = a Sin(r X)

(d

The ODE is inhomogeneous, so the general solution is of the form:

Y=Yn+Yp=aSin@3x) + BCos(3X) +Y,

We find a particular solution by the method of undetermined coefficients (see problem set 1)

Yp =a+bx
Plug this into the ODE to get

XxX=(@+bx)"+9@+bx)=9a+9bx
We see that a=0 and b=1/9. So the general solution is

y=aSin(3x)+BCos(3X) +x/9

The boundary conditions require:

B =0
B=n/9

So there is no solution.

©
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(54)

(55)

(56)

(57)

(58)

(59)

(60)



The ODE is inhomogeneous, so the general solution is of the form:

Y =Yh+Yp =aSin(3x) + Cos(3X) +Yp (61)

We find a particular solution by the method of undetermined coefficients (see problem set 1)

Yp =aSinx+bCos x (62)
Plug this into the ODE to get:

Sinx=(aSinx+bCosX"+9(aSinx+bCosx =8aSinx+ 8bCos x (63)
We see that b=0 and a=1/8, so the general solution is of the form:

y = Sin(3X) + BCos(3X) + % Sinx (64)

The boundary conditions require:

B=0
B=_1 (65)
So there is no solution.
®)
From part (e) we know that the solution will be of the form
. 1 _.
y = a Sin(3x) + S Cos(3x) + 3 Sin x (66)
The boundary conditions require:
B=1
So for anye, there is a solution of the form
. 1_.
y = @ Sin(3x) + Cos(3 x) + 5 Sinx (68)

Problem 5 (8 points)

Discuss the consistency of your answers to problem 4a-f with the two general theorems stated below:

I. A linear second order ODE with nonhomogeneous boundary conditions has a unique solution if and only if the corre-

sponding homogeneous problem has only the trivial solution.

Il. If the homogeneous boundary condition problem has a nontrivial solution, the corresponding nonhomogeneous bound-
ary value problem either has no solution or an infinity of solutions given y+g=u wherey, is a particular solution of

the nonhomogeneous problem, ¢ is an arbitrary constant and u is a nontrivial solution of the homogeneous boundary
problem.
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Solution to Problem 5

The homogeneous boundary value problem

y'+r°y=0, y(0 =0, y(1)=0 (69)

has the non-trivial solution y= Sitk. Theorem | says that BVPs (a) and (b) will not have a unique solution. Theorem Il
tells us that (a) and (b) will either have no solution or infinitely many. We found this to be the case, since we showed that
neither (a) nor (b) has a solution.

The homogeneous BVP

y"+9y=0, y(0=0, ym=0 (70)
has the non-trivial solution y= Sin3x as we found in part (c). Consider again part (d) where the ODE had an inhomoge-
neous term.

y"+9y=x, y(0=0, y(®=0 (71)

If we write y=z+x/9 we get

z"+9z=0, z(0)=0, z(n)=-n/9 (72)
In this form, theorems | and Il apply. Make similar changes in parts (e) and (f) by letting y=z+(Sin x)/8:

(e z"+9z=0, z(0)=0, z(n)=1

f)z"+9z=0, z0O)=1, y(m)=-1
With parts (d)-(f) written this way, the results of part (c) together with theorems | and Il tells us that these problems will
have either no solution or infinitely many. As we found, (d) and (e) have no solution while (f) has infinitely many solu-
tions of the form:

(73)

1
y = @ Sin(3x) + Cos(3X) + s Sinx (74)

for anya.

Problem 6 (10 points)

Let A; be the eigenvalues angl be the corresponding eigenfunctions of a linear differential operator L. Show that a
solution of

n
Ly+)Ly=ZAkyk (75)
k=1

where theA, are given constants is

n

N AcYk
y_kzz; - A (76)

provided thafl is not an eigenvalue.

Solution to Problem 6
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We know that

Lyk = =2k Yk (77)
Applying L to the proposed solution we find:

Ax Vi 5 Ax Ly Ax Ay Yk
Ly=L - .
y= Z T-A 4 A2y Z = A (78)

The operator passes through the sum because of it's linearity. AssumitgXhate have:

Ak Ak Yk Ak LYk 5 A Yk -
Ly +1y=— - -a)=>A
y+dy Z e kz; . kzlk—kk( © kz; K Yk (79)

Problem 7 (10 points)

Solve y"y=Sin zx+2 Sin Zix+3 Sin 3rx, y(0)=y(1)=0, by using the method of problem 6. What if any restrictiohien
required so that this solution be valid?

Solution to Problem 7

First we find the eigenvalues and eigenfunctions for L

V" +Ak Yk =0
80
Yk @)=y (D=0 (80)
We look for a solution of the form
y =™ (81)
Plug this into the ODE
P+ =0 (82)
So we have two solutions
y=Ae WX L B emiMx (83)
The boundary conditions require:
A+B=0
(84)

e 12
A er(/lk) +Be™ )™ 0

This linear system only has non-trivial solutions if the determinant is zero, otherwise the matrix would be invertible and we
would find A=B=0 which doesn't give an eigenfunction.

1

MY i

Solving this forA, gives:
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\Ou

A = (nm)?
The value n=0 just gives the trivial solution y=0, so the eigenvalues are all positive. (This could also have been realized by
recognizing this as a regular Sturm-Liouville eigenvalue problem and using the Rayleigh quotient). Knowing the eigenval-
ues allows us to find A and B. Doing this gives the general solution

- A-m@ T A-—4m T ai-9m

— K2 2
M=k 87)
Yk = Sin(k 7 x)
So the problem that we want to solve is:
Yy'+Ay=y1+2y,+3Yy3
88
y@=y@®=0 (88)
From problem 6 the solution be of the form:
B c . .
Ak Yk Sin(zx) 2Sin(2zx) 3Sin(3xXx)
y=>, = (89)
k=1

Obviously we must requirg/ A #z,27,3r, or else the result of problem 6 doesn't apply (i.e. the solution is more complicated
with resonant terms). Whatifis one of the other eigenvalues, 8ay? n’for n>3? You can check that in this case there
will be solutions of the form:

_ Sin(mx) N 2Sin(2nx) N 3Sin(3nrx)

M-z -4z (N2 -9 n2
for any value of A. So if the formula of problem 6 is to give the entire solution, we must requitentitabe any of the
eigenvalues, not just the eigenvalues corresponding to the eigenfunctions found in the inhomogeneous part of the equation.

+ASin(nzx) (90)
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