
ACM95/100b
Problem Set 1 Solutions
01/12/04

Problem 1 (2¥7 points)
Solve the following linear initial value problems and in each case describe the interval on which the solution is defined

a)

(1)
y ' + 2 x y = ‰-x2

y H0L = -1
b)

(2)
t y ' + 2 y = t2 - t + 1
y H1L = 1ê2

Solution to Problem 1
Note that "initial value problem" is typically meant to refer to a problem with prescribed data at t=t with the desired solution only
being examined for t≥t.  In what follows I have discussed continuity and existence for the full range tœ(-∞,∞).  If students only
consider tœ[t,∞) they should still receive full credit.

From the class notes, an initial value problem of the form:

(3)
y ' + p y = q
y HaL = b

Can be solved by use of an integrating factor

(4)I = ‰Ÿa

x
p HtL „t

Multiplying by this factor gives:

(5)J‰Ÿa

x
p HtL „t  yN ' = q ‰Ÿa

x
p HtL „t

After an integration and rearrangement we have:

(6)y = ‰-Ÿa

x
p HtL „t  i

k
jjA + ‡

a

x

q HsL ‰Ÿa

s
p HtL „t  „ s

y
{
zz

Applying the initial condition gives us the value of the arbitrary integration constant A:

(7)b = A
More generally the integration factor can be chosen to be

(8)I = ‰Ÿ p HxL „x

So that the most general solution to the ODE (ignoring the initial condition) is:

(9)y = ‰-Ÿ p HxL „x  JA + ‡ q HxL ‰Ÿ p HxL „x  „ xN

a)

(10)
y ' + 2 x y = ‰-x2

y H0L = -1
Applying the previously derived formula we find:
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(11)y = ‰-Ÿ0

x
2 t „t  i

k
jj-1 + ‡

0

x

‰-s2
‰Ÿ0

s
2 t „t  „ sy

{
zz

After simplification this becomes:

(12)y = ‰-x2
 Hx - 1L

Clearly the solution remains bounded for all -∞≤x<∞, and so the solution exists and is continous everywhere.

b)

The problem may be rewritten as:

(13)
y ' +

2
ÅÅÅÅÅ
t

 y = t - 1 +
1
ÅÅÅÅÅ
t

y H1L = 1ê2
The formula then gives:

(14)y = ‰-Ÿ1

t 2ÅÅÅÅs  „s 
i
k
jjj

1
ÅÅÅÅÅ
2

+ ‡
1

t

Js- 1 +
1
ÅÅÅÅÅ
s
N ‰Ÿ1

s 2ÅÅÅÅy  „y  „ s
y
{
zzz

Simplifying:

(15)y =
1

ÅÅÅÅÅÅÅ
t2

 
i
k
jjj

1
ÅÅÅÅÅ
2

+ ‡
1

t

Hs3 - s2 + sL „ s
y
{
zzz =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
12 t2

+
1
ÅÅÅÅÅ
2

-
t

ÅÅÅÅÅ
3

+
t2
ÅÅÅÅÅÅÅ
4

We see that the solution becomes unbounded at t=0.  Hence the solution exists only for 0<t<∞.

Problem 2 (15 points)
Solve the following real-valued initial value problem [4 points]:

(16)
x y ' HxL + Ay  HxL = 1 + x2

y H1L = 1
for all (positive,  zero and negative) values of the constant A, and then answer the following questions:  Is your solution actually
valid for all values of the constant A?  If you weren't  careful  in your initial  solution, you may need to amend it to include some
different  functional  forms for some values of A.  [4 points]  Over what  range of x is the solution defined and continuous;  your
answer may depend on A [3 points]?  Ignore the condition y(1)=1 and find that function y(x) which obeys the differential equa-
tion  is  bounded  at  the  origin;  you  need  not  find  this  solution  for  special  values  of  A  that  require  different  functional  forms [4
points].

Solution to Problem 2
We first rewrite the equation:

(17)y ' HxL +
A
ÅÅÅÅÅÅÅ
x

 y HxL =
1
ÅÅÅÅÅ
x

+ x

and then apply the formula derived in the solution of problem 1:

(18)y = ‰-Ÿ1

x AÅÅÅÅÅt  „t  i
k
jj1 + ‡

1

x

J
1
ÅÅÅÅÅ
s

+ sN ‰Ÿ1

s AÅÅÅÅÅt  „t  „ sy
{
zz

Simplifying gives:

(19)y = x-A + x-A  ‡
1

x

HsA-1 + sA+1L „ s

Depending on the value of A, the integral is computed differently yielding different possible solutions:

2
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(20y =

1ÅÅÅÅ2 + 1ÅÅÅÅ2  x2 + ln †x§ A = 0

- 1ÅÅÅÅ2 + 3ÅÅÅÅ2  x2 + x2 ln †x§ A = -2

1ÅÅÅÅÅA + 1ÅÅÅÅÅÅÅÅÅÅÅA+2  x2 A = ≤
è!!!

2

1ÅÅÅÅÅA + 1ÅÅÅÅÅÅÅÅÅÅÅA+2  x2 + A2-2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅA HA+2L  x-A otherwise

The solution takes on a special form for A=-2 and A=0.
For A=0 the solution is defined and continuous only for x>0.
For A=-2 the solution is defined for all x except x=0, and since

(21)lim
xØ0+

x2 ln †x§ = lim
xØ0-

x2 ln †x§ = 0

the solution is continuous at x=0 only if we define y(0)=-1/2.
If A is any negative integer except -2 the solution is continuous for -∞<x<∞.
For all positive values of A, except A=

è!!!
2 , the term x-A  is undefined at x=0 and hence the solution is continuous only for 0<x<∞.

For A= ±
è!!!

2  the solution is continuous everywhere.
For  some  negative  non-integer  values  of  A,  the  solution  is  bounded  and  continuous  for  0<x<∞  and  for  others  the  solution  is
bounded and continuous on -∞<x<∞.  For example, if A=-1/2 then x-A  is bounded at x=0 but not continuous since it is complex
for x<0.  But if A=-1/3 then x-A  is both bounded and continuous at x=0.  In general, if A is a negative irrational number, except
-
è!!!

2 , or  if  A=-p/q  with  p  odd and q  even then  the solution is  discontinuous  at  x=0.   If  A=-p/q  with  q odd then  the solution  is
continuous at x=0.

Recall that the solution to the ODE y'+py=q  is, in general:

(22)y = ‰-Ÿ p HxL „x  JC + ‡ q HxL ‰Ÿ p HxL „x  „ xN

In our case, ignoring A=0 and A=-2, this gives:

(23)y = C x-A + x-A  ‡ HxA-1 + xA+1L „ x =
1

ÅÅÅÅÅÅÅ
A

+
x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 + A

+ C x-A

For C≠0 this is only a bounded continuous function at the origin if  A is a negative integer or if A is a negative rational number
-p/q with q odd.  If A is to be chosen arbitrarily it is necessary to set C=0 to achieve a continuous solution at x=0.

Problem 3 (10 points)
Consider the same DE as in problem 2 complexified,  i.e. with real x replaced by complex z and real y(x) replaced with complex
w(z).   Assume w(1+0Â)=1+0Â.   Find an analytic  solution w(z) for general  real A (you may ignore any 'peculiar  values'  of A for
purposes  of  this  problem),  and discuss the region of  the complex plane over  which it  is valid (5  points).   Be sure to define the
locations of any branch cuts you introduce (2 points).  Under what circumstance can you analytically  continue the solution over
the whole real line x=x+0Â?  To the whole real line excluding one point?  Compare to your answers for problem 2 (3 points).

Solution to Problem 3

(24)
w' HzL +

A
ÅÅÅÅÅÅÅ
z

 w HzL =
1
ÅÅÅÅÅ
z

+ z

w H1L = 1
In general, an integrating factor for an equation of the following form:

(25)y ' + f  HxL y = g HxL
Is given by

(26)I = ‰Ÿ f  HxL „x

This allows the ODE to be rewritten in a form easy to integrate:

3
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(27I‰Ÿ f  HxL „x  yM ' = g HxL ‰Ÿ f  HxL „x

In the present case, we use this formula to find the following integrating factor:

(28)I = ‰Ÿ AÅÅÅÅÅz  „z

Where the integral is computed over some contour G connecting 1 to z and not passing through the origin.  Since the integrand is
analytic everywhere on G, the antiderivative exists:

(29)‡
G

A
ÅÅÅÅÅÅÅ
y

 „ y = A HLog z+ 2 npÂL

Where Log z is some branch of the log function.  This gives:

(30)I = ‰Ÿ AÅÅÅÅÅy  „y = ‰A HLog z+2 npÂL = zA  ‰2 pnAÂ

Using this integrating factor gives:

(31)HzA  w HzLL ' = zA-1 + zA+1

Integrating along G gives:

(32)‡
G

HyA  w HyLL ' „ y = ‡
G

HyA-1 + yA+1L „ y

We assume that w is analytic on G and consider 3 possible cases:

(i) A is a positive integer
In  this  case  both  integrands  are  analytic  functions  and  hence  the  integrals  can  be  evaluated  in  a  straightforward  manor  using
antiderivatives

(33)zA  w HzL - w H1L =
1

ÅÅÅÅÅÅÅ
A

 zA +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A + 2

 zA+2 -
1

ÅÅÅÅÅÅÅ
A

-
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A + 2

Simplifying gives:

(34)w HzL =
1

ÅÅÅÅÅÅÅ
A

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A + 2

 z2 +
A2 - 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A H2 + AL

 z-A

This solution is analytic for all z≠0 and hence for all real x≠0.  For real z this solution is identical to that computed in problem 2.

(ii) A is a negative integer
In this case both integrands have poles at z=0 but since the contour G was chosen to avoid z=0 these integrands are analytic on G
and hence the solution is the same as case (i).

(35)w HzL =
1

ÅÅÅÅÅÅÅ
A

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A + 2

 z2 +
A2 - 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
A H2 + AL

 z-A

Since A<0 this solution is entire moreover it exists on the whole real axis.  This is exactly what we found in problem 2.

(iii) A is not an integer
In this case the origin and the point at infinity are both branch point singularities of the integrands.  Let y be any simple curve in
the complex plane connecting z=0 to z=z∞ .  This y is a suitable branch cut.  If we then choose zA  to be any particular branch, then
the integrands are analytic everywhere on G provided that G not intersect y.  If we want our solution to be valid for all points on
the real axis (except z=0) then we should not place branch cuts on either the positive or negative real axis, as you may have done
many times before.  A cut at any angle other than 0 or p will suffice.  To be specific let the branch cut y be the negative imagi-
nary axis and choose the following branch of zA :

4
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(36
zA = ‰A Hln †z§+Â arg HzLL

-p
ÅÅÅÅÅÅÅÅÅÅ
2

§ arg HzL <
3 p
ÅÅÅÅÅÅÅÅÅÅ
2

Then if we wish to define w(z) as an analytic function for all real z except z=0 we simply integrate both integrals on some curve G
from 1 to z not intersecting the branch cut on the negative imaginary axis.  In problem 2 it wasn't possible to define the solution
along the negative real axis because restricting G to the x axis made it impossible to avoid the branch point singularity at z=0.  In
the present case we have shown that w(z) can be define analytically for z=x<0 since G connecting 1 to z can be chosen to avoid
the branch point. 

Problem 4 (15 points)
For any real number a, find y(x) such that

(37)
y ' HxL + a y HxL = ‰-x

y H0L = 1
over  the range 0≤x<∞  [8  points].   Sketch a graph of y(x)  for each of several  values  of a.   Include particularly  a=-100,-1,1,100,
104[7 points]

Solution to Problem 4
In general, an integrating factor for an equation of the following form:

(38)y ' + f  HxL y = g HxL
Is given by

(39)I = ‰Ÿ f  HxL „x

This allows the ODE to be rewritten in a form easy to integrate:

(40)I‰Ÿ f  HxL „x  yM ' = g HxL ‰Ÿ f  HxL „x

For this problem the formula produces the integrating factor I=‰ax.  This gives:

(41)H‰a x yL ' = ‰Ha-1L x

Integrating and simplifying gives:

(42)y =
A ‰-a x + ‰-x

ÅÅÅÅÅÅÅÅÅÅa-1 a ∫ 1

HB + xL ‰-x a = 1
Implementing the initial condition gives:

(43)y =
a-2ÅÅÅÅÅÅÅÅÅÅa-1 ‰-a x + ‰-x

ÅÅÅÅÅÅÅÅÅÅa-1 a ∫ 1

H1 + xL ‰-x a = 1
Some plots are shown below, note the different scales.

5
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Problem 5 (7 points)
Consider the DE

(44)
y ' + y ê x = 1
y H1L = 1ê2

Find  the  vertices  of  the  Euler  polygonal  approximations  (described  in  class)  to  the  solution,  as  a  function  of  x-increment  h  [5
points].  Show explicitly that the approximate Euler solutions approach the actual solution as hØ0 [2 points].

Solution to Problem 5
Define

(45)xn = 1 + n h
The Euler iterates are then given by:

(46)
Yn+1 = Yn + h H1 - Yn ê xnL = Yn + h J1 -

YnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + n h

N

Y0 = 1 ê2
By inspection, a solution to this initial value linear difference equation is:

(47)Yn =
1 + nh
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
By the uniqueness of solutions to first order linear difference equations, this is the only solution.
The exact solution to the initial value problem can be obtained either by appealing to the formula given in problem 1 or by use of
an integration factor.  Either way we find:

(48)y = x ê2
The exact solution evaluated on the x grid points is then:

6

Printed by Mathematica for Students



(49
yn =

xnÅÅÅÅÅÅÅÅ
2

=
1 + n h
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
Notice that Yn = yn  hence the Euler approximation gives the exact solution for any value of h.

Problem 6 (4x5 points)
a) A cylindrical bucket has a hole in the bottom, and is observed to be empty at time t=0.  The differential equation governing the
height z(t) of water in the bucket as a function of (appropriately scaled) time is the following 'final value problem':

(50)

„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= -†z§1ê2

z H0L = 0
Notice the following:  (i) height of water is a positive number (on my rulers anyway), so only solutions with z≥0 are to be consid-
ered,  (ii) z(t)=0 is a  solution, but perhaps not the only one.  Given that z(0)=0, show mathematically that the solution is unique
for t>0, but non-unique for t<0, and give a simple explanation in terms of what you can infer (when did it empty?) from observ-
ing an empty bucket with a puddle under it for why nonuniqueness is reasonable and physical.  [hint:  be careful with integration
constants and matching solutions]

With your insights from part (a), now consider the following initial value problem:

(51)

„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= †z§pêq

z H0L = 0
where p and q are positive integers with no common factors.   Notice that z(t)=0 is a  solution, but perhaps not the only one, and
that  'initial  value problem'  means that  you are to consider only  t≥0.  Notice that  setting t=-t in part  (a) converts  the 'final value
problem' to the present initial value problem, with p=1, q=2.

b) Show that there are an infinite number of solutions if p<q.

c) Show that there is a unique solution if p>q.

d) Relate your results of parts (b) and (c) to the Lipshitz condition used in the proof of the uniqueness theorem sketched in class.

Solution to Problem 6
a)

(52)

„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= -†z§1ê2

z H0L = 0
Since the right hand side is non-positive, for t>0 we have z≤0.  This is easily seen as follows

(53)z HtL = ‡
0

t „ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

 „ t = -‡
0

t

†z§1ê2 „ t § 0

Motivated  by  the physical  problem,  z=0 corresponds  to  an  empty  bucket,  hence  z<0 is  physically  impossible.   Since we know
that, for t>0, z≤0, this requires that z=0 for all t>0.  Hence the solution z(t)=0 for t>0 is the unique physical solution.
A similar calculation shows that, for t<0, z≥0.  This is physically permissible.   However,  when posed with an empty bucket we
have no idea of knowing when the bucket became empty.
So for t<0 we have the following problem:

(54)

„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= -z1ê2

z H0L = 0
We may rewrite the ODE as:

7
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(55„
ÅÅÅÅÅÅÅÅÅÅ
„ t

 H2 z1ê2L = z-1ê2 
„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= -1

Integrating both sides gives:

(56)2 z1ê2 - 2 z0
1ê2 = t0 - t

Simplifying:

(57)z HtL = Jz0
1ê2 +

t0 - t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
N
2

Since t0<0 and z(t)=0 for all t>0 we may combine this solution with the zero solution to get:

(58)z HtL =
H t0-tÅÅÅÅÅÅÅÅÅÅÅÅ2 L2 t < t0 < 0

0 t > t0

Thus for t<0 there are infinitely many physically allowable solutions corresponding to buckets that became empty at time t=t0≤0.

b)

(59)

„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= †z§pêq

p < q
For parts (b) and (c) we write the equation as:

(60)†z§-pêq 
„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

- 1 = 0

For p≠q we may write this as:

(61)
„

ÅÅÅÅÅÅÅÅ
„ t

 
i

k
jjjj
†z§1-pêq

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - p êq

 sign HzL - t
y

{
zzzz = 0

We now integrate from t0to t on both sides:

(62)
†z§1-pêq

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - p êq

 sign HzL -
†z0§1-pêq
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - p êq

 sign Hz0L = t - t0

If we choose z0=0 and simplify we find:

(63)†z§1-pêq sign HzL = H1 - p êqL Ht - t0L
For any t0≥0 this allows us to produce solutions of the form

(64)z HtL = HH1 - p êqL Ht - t1LL
1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq t > t1 ¥ 0

0 0 § t < t1
Or even more generally:

(65)z HtL =
-HH1 - p êqL Ht0 - tLL

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq t § t0 § 0
0 t0 < t < t1

HH1 - p êqL Ht - t1LL
1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq t ¥ t1 ¥ 0

For  any  choices  of  t0≤0  and  t1≥0  this  gives  a  solution  to  the  ODE which  also  satisfies  the  initial  condition.   Hence  there  are
infinitely  many solutions to the initial  value problem when p/q<1.   Note  that  despite  the solution being defined piecewise,  it  is
indeed continuously differentiable when p/q<1.  For example:

8
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(66
z Ht1+L = H1 - p êqL

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq  lim
tØt1+

Ht - t1L
1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq = 0

z' Ht1+L = -H1 - p êqL
pêqÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq  lim

tØt1+
Ht - t1L

pêqÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq = 0

For example, with p/q=1/2, t0=-3 and t1=2 we have the following solution:

Figure 2

-6 -4 -2 2 4

-1

-0.5

0.5

1

c)

(67)

„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= †z§pêq

p > q
Solutions of the form demonstrated in part (b) are no longer allowable since for p/q>1 we have:

(68)

†z Ht1+L§ = †1 - p êq§
1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq  lim

tØt1+
†t - t1§

-1ÅÅÅÅÅÅÅÅÅÅÅÅÅpêq-1 = ∞

†z ' Ht1+L§ = †1 - p êq§
pêqÅÅÅÅÅÅÅÅÅÅÅÅÅ1-pêq  lim

tØt1 +
†t - t1§

-pêqÅÅÅÅÅÅÅÅÅÅÅÅÅpêq-1 = ∞

So, while the solutions are valid for t> t0  and for t< t0,  they are not valid for t=t0because in general,  solutions blow up in finite
time.  Hence the only solution to the initial value problem is for t0=∞, i.e. z(t)=0 for all t.   This can also be seen by examining the
flows of the vector field corresponding to the ODE:

Figure 3

pêq<1 pêq>1
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When p/q<1, the trivial  flow z=0 can be pieced together with flows with z>0 and z<0 to create an arbitrary number of solutions
which all stay finite for finite time.  Formulas for these solutions were shown expicitly above.  However, for p/q>1 all flows with
z>0 or z<0 require infinite time (forward or backward) to reach z=0 and they also become unbounded in finite time.  To see this
analytically, examine again the general solution formula:

(69)
†z§1-pêq

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - p êq

 sign HzL -
†z0§1-pêq
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - p êq

 sign Hz0L = t - t0

For p/q>1 if we attempt to set z0=0 we find that the term †z0§1-pêq  becomes infinite, requiring that z=0 for all time or that †t§=∞.
Hence, no solution which is initially  non-zero can become zero in finite time.   The only solution that  ever has z=0 is the trivial
solution z(t)=0.

 hence it is not possible to incorporate these flows with the z=0 flow.  This means that z=0 is the only solution.

d)

A function f(·) is said to Lipshitz continuous in (a,b) if the following condition holds for all x,ye(a,b)

(70)†f  HxL - f  HyL§ § L  †x - y§
The constant L is called the Lipshitz constant and usually depends on the interval (a,b).
As discussed in class, a unique solution to the ODE

(71)
„ y
ÅÅÅÅÅÅÅÅÅÅ
„ x

= f  Hx, yL

is guaranteed to exist on any interval where f is Lipshitz continuous in y, i.e. the following condition holds:

(72)†f  Hx, yL - f  Hx, zL§ § L †y - z§
For our problem we have:

(73)†f  Hx, zL - f  Hx, 0L§ = †z§pêq

If p<q, then the term †z§pêq  is larger than †z§ for all ze(-1,1).  Indeed,

(74)lim
zØ0

†z§pêq
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
†z§

= ∞

So there is no Lipshitz constant L that would allow us to make the following type of bound near z=0:

(75)†z§pêq < L †z§
Since this type of bound is impossible, the function f(x,z) isn't Lipshitz continuous near z=0 for p<q.  Since the Lipshitz condition
doesn't  hold near z=0, the uniqueness proof discussed in class doesn't  apply.  Hence for p<q there is no guarantee that a unique
solution exists.  This is consistent with what you found in part (b).

If p>q we have the following for all ze(-1,1):

(76)†f  Hx, zL - f  Hx, 0L§ = †z§pêq § †z§
This means that f(x,z) is Lipshitz continuous at z=0.  So a unique solution to

(77)
dzêdt = †z§pêq
z H0L = 0

is guaranteed to exist in some interval about t=0.  This agrees with the result we found in part (c).

Problem 7 (5x4 points)
The object of this wordy problem is to give you practice in finding exact solutions to one common type of ODE, and also show
you that approximate solutions are often much more useful than exact solutions if you want to understand what is going on.
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If the Mars Exploration Rover folks at JPL had taken only one week of ACM95b, they might unwisely have decided to send the
Rovers down radially (i.e. vertically into Mars' atmosphere) because they did not yet know how to solve the systems of coupled
nonlinear  differential  equations  that  would  govern  an oblique approach.   Consider  this  simplified  radial  problem.   Let  z  denote
height  above Mars'  surface, and r = r0exp[-z/H] the density  of its atmosphere,  whose surface density is r0=2µ10-5g cm-3  and
whose scale height is H=11km.  Let the Rover (with heat shield!) have constant mass m and effective area Ae  (note for cognos-
centi, unimportant for this problem: Ae= AcD /2 where A is the actual cross-sectional area, and cD~2 is the drag coefficient).  The
drag force on a Rover moving straight down through the atmosphere at speed v=-dz/dt is FD=rv2  Ae .  Also acting on the Rover is

the force of Mars' gravity (g(0)=373cm s-2at the surface, with vertically integrated escape velocity ve  H0L = A2 Ÿ0

∞
gHzL „ zE

1ê2
from

Mars of 5km s-1).

a) Show that the Rover's equation of motion is

(78)-m 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ t

= -m g HzL + v2 r0 Ae ‰-zêH

Show  also  that  the  left  hand  side  of  this  equation  can  be  written  as  mv(„v/„z)=m  „(v2 ê2)/„z,  thus  changing  the  independent
variable  from  time  t  to  height  z  above  the  surface  of  Mars.   Simplify  the  equation  noting  that  only  the  combined  quantity
m/(r0  Ae )ª ls  (the 'stopping length in the Martian atmosphere') appears.  Notice that this is a first order linear ODE in v2.

b)  First  pretend  g(z)=0.   Solve  the  resulting  homogeneous  equation  for  v2HzL,  given  a  speed  of  incidence  on  the  atmosphere
v(∞)=v∞ .  Your expression for v(z) should involve only (elementary functions and integral of) H, ls , v∞  and z.

c)  Now allow a g(z)≠0.  Use your result in (b) to find the general solution for v2HzL, given a speed of incidence v(∞)=v∞ .  Your
expression for v(z) should involve only (elementary functions and integral of) H, ls , v∞  and z.

d) Show that the complicated expression you found in (c) has two simple limiting cases, H ê ls ` 1 and H ê ls p 1.  For each of
these two limits,  find the lowest order approximation  expressions for the Rover  landing velocity  v(z=0).  Also explain how you
could have derived these two limiting answers immediately by inspection of the differential equation you found in part (a).

e) To avoid catastrophic destruction of the Rover, you should find from (d) that you want to be in the H ê ls p 1 limit.  What is the
maximum radius (in centimeters)  a spherical Rover  of mean density  1g cm3  could have if  it  is to slow down to v(0)<10m s-1?
Take  v∞ =5km s-1.   If  the answer  makes  you  worried  you  now understand  why  the actual  Rover  came in  obliquely,  and  had a
parachute and retro rockets.

Solution to Problem 7
a)  We know from basic physics that:

(79)massµ acceleration= ‚Forces

Since the speed of the Rover is given by v=-„z/„t, the acceleration is „2z/„t2=-„v/„t.  Also, the only forces assumed to be acting
on the rover are gravity and drag.  We then find:

(80)-m 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ t

= gravity+ FD = -m g HzL + v2 r Ae = -m g HzL + v2 r0 Ae ‰-zêH

If the Rover's speed were to ever reach 0, the drag force would vanish and gravity would increase the speed.  This intuitive idea
shows  that  the  speed  of  the Rover  can never  change  sign  and  hence  the  Rover  never  reverses  directions  (i.e.  'bounces'  off  the
atmosphere)  hence v is indeed a single valued function of z, so we may change variables from v(t) to v(z).  Using the chain rule
for derivatives we find:

(81)-m 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ t

= -m 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ z

 
„ z
ÅÅÅÅÅÅÅÅÅÅ
„ t

= m v 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ z

= m
„

ÅÅÅÅÅÅÅÅÅÅ
„ v

 Hv2 ê2L 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ z

= m
„

ÅÅÅÅÅÅÅÅÅÅ
„ z

 Hv2 ê2L

This gives:

(82)m
„

ÅÅÅÅÅÅÅÅÅÅ
„ z

 Hv2 ê2L = -m g HzL + v2 r0 Ae ‰-zêH

Divide both sides by m/2:
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(83„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ z

= -2 g HzL +
2 r0 AeÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
 v2 ‰-zêH = -2 g HzL +

2
ÅÅÅÅÅÅ
ls

 v2 ‰-zêH

Letting w = v2 we have a linear ODE for w(z)

(84)
„ w
ÅÅÅÅÅÅÅÅÅÅÅ
„ z

=
2 ‰-zêH
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ls
 w - 2 g HzL

b)

(85)

„ w
ÅÅÅÅÅÅÅÅÅÅÅ
„ z

-
2 ‰-zêH
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ls
 w = 0

w H∞L = v∞
2

In general, an integrating factor for an equation of the following form:

(86)y ' + f  HxL y = g HxL
Is given by

(87)I = ‰Ÿ f  HxL „x

This allows the ODE to be rewritten in a form easy to integrate:

(88)I‰Ÿ f  HxL „x  yM ' = g HxL ‰Ÿ f  HxL „x

An integrating factor for our problem is:

(89)I = ‰Ÿ - 2 ‰-zêH
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅls

 „z = ‰
2 HÅÅÅÅÅÅÅÅls

 ‰-zêH

This gives:

(90)I‰
2 HÅÅÅÅÅÅÅÅls

 ‰-zêH
 wM ' = 0

Solving gives:

(91)w = A ‰- 2 HÅÅÅÅÅÅÅÅls
 ‰-zêH

The initial condition gives:

(92)v∞
2 = w H∞L = A ‰0 = A

So the solution is:

(93)v2 = v∞
2 ‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-zêH

c)

As shown in class the general solution to a linear homogeneous ODE may be used to find the general solution to the correspond-
ing linear inhomogeneous ODE using a technique known as variation of parameters.  The basic idea for a first order linear ODE is
given below:

We want to solve

(94)
„ y
ÅÅÅÅÅÅÅÅÅÅ
„ x

+ f  HxL y = g HxL

Suppose that z(x) is any solution to:
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(95„ y
ÅÅÅÅÅÅÅÅÅÅ
„ x

+ f  HxL y = 0

Set y=z(x)w(x) and plug into the inhomogeneous equation:

(96)w 
„ z
ÅÅÅÅÅÅÅÅÅÅ
„ x

+ z 
„ w
ÅÅÅÅÅÅÅÅÅÅÅ
„ x

+ f  HxL z w = g HxL

Group terms:

(97)w J
„ z
ÅÅÅÅÅÅÅÅÅÅ
„ x

+ f  HxL zN + z 
„ w
ÅÅÅÅÅÅÅÅÅÅÅ
„ x

= g HxL

Since z is a solution to the homogeneous ODE, the term in parenthesis is zero.  And we are left with a very simple ODE for w:

(98)
„ w
ÅÅÅÅÅÅÅÅÅÅÅ
„ x

=
g HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z HxL

This is solved by simply integrating both sides:

(99)w = C + ‡
g HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z HxL

 „ x

So the general solution to the Inhomogeneous problem is:

(100)y = z w = z HxL JC + ‡
g HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z HxL

 „ xN

In our case, we found that

(101)v2 = v∞
2 ‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-zêH

Solves:

(102)
„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ z

-
2
ÅÅÅÅÅÅ
ls

 ‰-zêH  v2 = 0

We want to use this solution to solve the inhomogeneous problem:

(103)
„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ z

-
2
ÅÅÅÅÅÅ
ls

 ‰-zêH  v2 = -2 g HzL

Applying the formula derived using variation of parameters we have

(104)v2 = v∞
2 ‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-zêH
 
i
k
jjjC + ‡

∞

z -2 g HyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
v∞2 ‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-yêH
 „ y

y
{
zzz

The integration constant C is found by applying the initial condition:

(105)v∞
2 = v2 H∞L = v∞

2 
i
k
jjjC + ‡

∞

∞ -2 g HyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
v∞2 ‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-yêH
 „ y

y
{
zzz = C v∞

2

Hence the solution is:

(106)v2 = v∞
2 ‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-zêH
+ 2 ‡

z

∞
g HyL ‰

2 HÅÅÅÅÅÅÅÅls
 H‰-yêH -‰-zêH L  „ y

Which shows that the surface speed obeys:
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(107
)v2 H0L = v∞

2 ‰- 2 HÅÅÅÅÅÅÅÅls + 2 ‡
0

∞
g HyL ‰

2 HÅÅÅÅÅÅÅÅls
 H‰-yêH -1L  „ y

d)  Suppose H ê ls`1.  This is  the case when the atmosphere has very little effect  on the Rover  and the Rover  free falls  as if  it
were in a vacuum.   Notice that this gives:

(108)
‰- 2 HÅÅÅÅÅÅÅÅls

 ‰-yêH
º ‰0 = 1

‰- 2 HÅÅÅÅÅÅÅÅls º ‰0 = 1
The solution formula is then greatly simplified:

(109)v2 H0L = v∞
2 + 2 ‡

0

∞
g HyL „ y = v∞

2 + ve
2 H0L

Suppose instead that H ê ls p 1.  This is the case when drag forces are strong enough to decelerate the Rover very rapidly result-
ing in a Rover that falls at the local terminal velocity.  Notice that this gives:

(110)‰- 2 HÅÅÅÅÅÅÅÅls º ‰-∞ = 0
The solution is then of the form:

(111)v2 H0L º 2 ‡
0

∞
g HyL ‰- 2 HÅÅÅÅÅÅÅÅls

 H1-‰-yêH L  „ y

The integrand will be nearly zero everywhere away from y=0.  Hence this integral may be replaced with

(112)g H0L ‡
0

∞
‰- 2ÅÅÅÅÅls

 y  „ y

and the error of  this  approximation is  of lower order (see Bender & Orszag for more on the asymptotic  approximation of  inte-
grals).  So our approximation is:

(113)v2 H0L º 2 g H0L ‡
0

∞
‰- 2ÅÅÅÅÅls

 y  „ y = ls g H0L

In part (a) we derived the equation:

(114)
„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ z

-
2
ÅÅÅÅÅÅ
ls

 ‰-zêH  v2 = -2 g HzL

If we rescale z by setting z=Hy we have:

(115)
„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ y

-
2 H
ÅÅÅÅÅÅÅÅÅÅÅ
ls

 ‰-y  v2 = -2 H g Hy HL

Notice  that the term H ê ls  appears explicitly  in this equation.   If H ê ls ` 1, we should eliminate the drag term so that the rover
falls as if in a vacuum.  This is done by setting H/ls=0 :

(116)
„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ y

= -2 H g Hy HL

Integrating and applying the initial condition gives:

(117)v2 = v∞
2 + 2‡

zêH

∞
g HzL „ z

Setting z=0 we find the same answer as above:
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(118
)v2 H0L = v∞

2 + ve
2

If instead H ê ls p 1we might write:

(119)
lsÅÅÅÅÅÅÅ
H

 
„ v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ y

- 2 ‰-y  v2 = -2 ls g HyHL

In  this  limit  we  should  eliminate  the  acceleration  term  so  that  the  rover  falls  at  the terminal  velocity.   This  is  done  by  setting
ls êH=0 and solving for v:

(120)v2 H0L = ls g H0L
This also agrees with the approximation found above.

e)  In the previous part we used two different approaches to show

(121)v2 H0L º
v∞

2 + ve
2 H ê ls ` 1

ls g H0L H ê ls p 1
From the problem statement we know the following:

(122)

v∞
2 = 25 km2 s-2 = 2.5µ 1011 cm2 s-2

ve
2 H0L = 25 km2 s-2 = 2.5µ 1011 cm2 s-2

ls =
m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r0 Ae

m = volume* density= J
4
ÅÅÅÅÅ
3

 p r3N g

r0 = 2µ 10-5 g cm-3

Ae = A cD ê2~A = pr2 cm2

g H0L = 373 cm s-2

These values give:

(123)v2 H0L º
5µ 1011 cm2 s-2 H ê ls ` 1

H 746ÅÅÅÅÅÅÅÅÅ3 µ 105 rL cm2 s-2 H ê ls p 1

When H ê ls`1 the velocity at the surface is over 7000m/s.  Much too fast!  So the limit we are interested in is H ê ls>>1.  If we
desire the velocity to be below 10m/s=103cm/s  we have the following inequality:

(124)$%%%%%%%%%%%%%%%%%%%%%%%%746
ÅÅÅÅÅÅÅÅÅÅÅÅ

3
µ 105 r < 103

This gives:

(125)r <
30

ÅÅÅÅÅÅÅÅÅÅÅÅ
746

= 0.040 ...

In order to have the desired velocity, the Rover would need to be less than 0.5mm!  Obviously a free-falling radial approach isn't
the right idea.

For completeness note that

(126)H ê ls =
33
ÅÅÅÅÅÅÅÅÅ
2 r

For r=0.040.. this is indeed p1, so our approximation is valid.

A note from Dr. Phinney to the students:
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THE MORAL OF THIS EXERCISE (especially for those of you who had trouble with the approximations to the exact solution:
IT IS ALMOST ALWAYS EASIER TO FIND AND UNDERSTAND SOLUTIONS TO APPROXIMATE EQUATIONS THAN
IT  IS  TO  FIND  AND  UNDERSTAND  THE  CORRESPONDING  LIMITS  OF  'EXACT''  SOLUTIONS  TO  'EXACT''  GEN-
ERAL EQUATIONS. Remembering this in later life may save you a lot of blood, sweat, tears and money.
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