Midterm Exam Solutions

Problem 1 (8+3x6 Points)

(@) (8 points)

(i) (2 points)

2
y'+Xy'+ @ y=0 Q)
Irregular (Essential) Singular point at x=0.

(i) (2 points)

X NG

"— ' =0 2

YT x -2 T x-hx-2 @
Regular singular points at x=1 and x=2. (1 point each)
(i) (2 points)

y'"+2y'+2y=0 3)
No singular points, all ordinary points.
(iv) (2 points)

y'+ g v=0 (4)

Regular Singular points occur for x=2nzi (1 point) except for x=0 which is an ordinary point since the singularity is
removable(1 point):

lim
x-0 eX —1

(b) (6 points)

=1 5)

(i) (3 points)

Since there are singular points at x=1 and x=2, the nearest singular point to the origin is x=1. (1 point) By Fuch's theorem,
the radius of convergence of the series is at least the distance to the nearest singularity, so the radius of convergence is at
least 1 (1 point). Hence the series is guaranteed to converge in (1 points)

x| <1 (6)
(i) (3 points)

Since there are singular points at x=2nsni, the nearest singular points to the origin are x=+2xi (1 points). By Fuch's theo-
rem, the radius of convergence of the series is at least the distance to the nearest singularity, so the radius of convergence is
at least 27 (1 point). Hence the series is guaranteed to converge in (1 point)

X|<2nm @)
(c) (6 points)
(i) (2 points)

As stated in class, an equation of the form
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N p(X) - g(x)
(X = Xo) (X — X0)?

Where p and q are analytic at X, leadsto an indicial equation given by

V2+(p0—1)V+qO=O (9)
Where

POO= ) Pn(X—X)"
n=0

) (10)
409 = th (X=X0)"
n=0
In this problem the equation is
X x?
w_ ' - 11
y (x—l)(x—2)y+(x—1)(x—2)y 0 (1)
so
D= -X
Cx-2
x2 (x-1) (12)
o ox=2
This gives pp=1 and gp=0. Plugging thesein givestheindicial equation (1 point)
V2 =0 (13)

So thereis adouble root of v=0 (1 point).

(i) (2 points)

No, it can not. By Fuch's theorem, only one of the solutions will be in the form of a Taylor series.
(iii) (2 points)

Method 1

Fuch's theorem (or they might site theorem 25 from page 27 of the class notes) tells us that one solution will be of the form
of apower series

yi=) & (x-1" (14)
n=0
and a second linearly independent solution will be of the form

Y2 =Inx=1y; () + > by (x=1)" (15)

n=0
Method 2

Asv, — v, terms of the form

XYL yy2 (16)
take the form
XYL M2 -y (1 _ sz—vl) = x"* (1 _ e(vz—vl)ln|x|) o —x (V2 _ Vl) In |X| (17)
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So we expect a solution of the form

Y2 =Infx =1y (0 + > by (x=1)" (18)

n=0
(d) (6 points)

y'+2y'+2y=0

y@0)=1 (19)
y'(0)=0

Transform
PY-sy@0) -y 0)+2sY-2y0)+2Y =0 (20)

Insert the initial data and solve for Y (2 points)

S+2
_ 21
Y 2 4+2s+2 (21)

Method 1

Rewrite the transform as (2 points)

_ s+1 . 1 22)
s+ 12+1 s+1%+1
From a table we know
L‘l[;] = Cost
2 +1
a1 , 23)
L [Sz+1]=s'”t
Using these together with a shifting theorem gives (2 points)
y =e ' (Sint+ Cost) (24)
Method 2
Rewrite the transform as partial fractions (2 points)
1 1
_ 2 2 25
S—(—1+i)+s—(—1—i) (29)
From a table
arl
Li<]=1 (26)
Applying a shifting theorem gives (2 points)
1-4 . 1+1i )
y==>- Lottty —;’ L 10t = ot (Sint + Cost) (27)
Method 3
1 cHio 542 «
= d 28
y 2mzfc_m Zi2s12° “° (28)

Since there are simple poles at s=-1+i, we choose and c=0. We then integrate around the following contour, call it I's.
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Figurel

The integral around the semicircular contour vanishes which is proven as follows (2 points)

S+2

- ﬁd —
2+2s+2 "
) (29)
37/2 Rei? +2 y A 37/2 Rei + 2
f : 2@ : R Rie? do st . 2|.9€ |_9 SRIC g0
72 (Ret?)" +2Rel? +2 2 IRE&12Re +2)

For Large R we have by the triangle inequality

IRe'? + 2| - IRetf| +2| R+2
= " - = -
IRZ2 €210 + 2R e +2| ~ |R2 21— |2Rei?| - 2] R2-2R-2
Since Cos is non-positive on the interval (n/2,37/2) Jordan's Lemma applies and the integral vanishes. So, by the residue
theorem we have

0 (30)

1 [ s+2 s+2 s+2
ds=Res| ———— &%, -1-i|+Res| =——— &%, -1+ 31
2ri j;_m e L E P rew L i)+ Res( 57z < -1+ (31)
Calculating the residues (1 point)
(5= (-1-iN(s+2) ¢ s+t L+i g
lim e¥ = = e
so>—1-i P +2s+2 s»>-1-i S—(=1+1) 2 (32)
(5= (=1+i)(s+2) ) (s+2) e 1-i
lim = = eIt
s>—1+i P +2s+2 s>-1+i S—(=1-10) 2
So we have (1 point)
1+ . 1-4 )
y=—5 Lttty —5 L et 10t = o7t (Sint + Cost) (33)

Problem 2 (4x6 points)
(a) (6 points)
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Asgiven in class, the Wronskian of two solutions to an equation of this form

py"+qy'+ry=0 (34)
is of the form (2 points)

W (x) = C e~/ 5 @ (35)
For this example q(x)=0, so W(x)=C, a constant. From the definition of the Wronskian, and the given initial conditions, we
calculate W(0) (2 paints)

W) =y1 0y (0 -y1' 0y (0) =1 (36)
Since W(x)=C, a constant, and W(0)=1 we have learned that W(x)=1 for all x (2 points).
(b) (6 points)

Since W(x)=1£0 for al x, these two solutions are linearly independent (3 points). Since a second order linear homoge-
neous ODE has a general solution composed of a linear combination of any two linearly independent solutions, we know
that the general solution to the ODE is (3 points)

yX)=Ay1 (X)+By2 () (37)
for arbitrary constants A and B.

(c) (6 points)

y=> ax" (38)
n=0

Plug into the ODE

Zann(n—l)x”‘2+ZZanx”+Z—4anx”+2=O (39)
n=2 n=0 n=0

Shift the indices of the first and last sum

Za,1+2(n+2)(n+1)x”+Zzanx“+2—4an_2x”=O (40)
n=0 n=0 n=2

Combine these into asingle sum (2 points)

2(2 +a) +2(B& +a)X+ ) (B (N+2)(N+1)+28 - 432)x" =0 (41)
n=2
The only power series that is zero throughout its radius of convergence is the series with all zero coefficients. Setting the
coefficients to zero gives (1 point)

H=-9

=-a/3
B=-a/ (42)
Ao = M forn=2

2T n+2)(n+ 1 -

We calculate the first few terms (2 points)
1 1 7

ao(l—x2+Ex4—...)+al(x—§x3+%x5—...) (43)

To satisfy the boundary conditions we define (1 point)
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1
yl(x)zl—x2+§x4—...

(X) = X 1 X3 + ! x°

Y200 =X= g X g5 X
(d) (6 points)

Method 1

Since one solution of the equation is

y1 00 =e™*
we seek a second solution of the form (1 point)

y2 00 = e u(x)
Plug thisinto the ODE

(e"‘2 u)"+(2-4x% e u=0

Compute the derivatives and simplify (1 point)

u"-4xu'=0
Using an integrating factor, or looking up the general solution formula for first order ODE leadsto (1 point)

2
u'= A e?*

Integrating this once gives (1 point)

X
u=B+Afe2‘2 dt
0

and (1 point)

X
Yo (X)= e (B+Af et dt)
0

Fitting the initial data gives two equations for A and B
0 2
0=y2(0)=e‘°(B+Af et dt]:B
0

0
1=y, (0)=0e" (B+Af P dt)+A =A
0

So we conclude (1 point)

X
Vo (X)=e™® f 2% dt
0
Method 2
In part A we computed the Wronskian W(x)=1. This gives (1 point)

Yiy2'-y1'y2=1
Plugging in y; givesafirst order ODE for y, (1 point)

Yo'+ 2XYs =X
Solving this with an integrating factor or the general solution formulafor afirst order linear ODE gives (2 point)
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(44

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)



X
y2 =e™ (B +Af 2t clt) (56
0

Fitting the initial data gives two equations for A and B

0
0=y2(0)=e‘0(B+Af o2t dt]:B
0

. (57)
1=y, (0)=0e"” (B+Af et dt)+A =A
0
So we conclude (2 points)
2 % 2
y2 (X) = e f et dt (58)
0
Problem 3 (4x6 points)
(&) (6 points)
Ty = 5
y=xy=x (59)
y®=0
From the class notes, an integrating factor is given by (1 point)
| = el-% 4 = g2 = x-2 (60)
This gives (1 point)
x2y) =x° (62)
Integrating both sides gives (2 points)
X 1
y:xZ(A+ftsdt)zAx2+Z(x6—x2) (62)
1
Fitting the initial date gives
O=y@Q)=A (63)
So the solution to the IVP is (2 points)
x8 — x2
= 64
y ) (64)
(b) (6 points)
Method 1
" 2ye= 6(X—¢)
Ye (D) =0
Using the same integrating factor we found in the previous part gives (2 points)
X
Yo = X (A + f t26(t-&) dt) (66)
1

Fitting the intial data gives A=0. Computing the integral we find (4 points)
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X>&E>1

2 (2
) Hx-oHE-1= %

Yo = ( .
0 otherwise

Method 2
The general solution to the homogeneous equation is (1 point)

y=AX?
So we have ( 1 point)

Ax? forl<x<é

y= Bx? forx>é>1

Theinitial data gives A=0. Integrating the equation from &-e to - and letting e—0 gives (1 point)

+

& ¢ 2
1=f 6(X—§)c£X=f ye'—;yedhye(f)—ye(f‘):ye(§+)
& &

This gives B=1/£2(1 point). So our solution is (2 points)

_ (%)2 Xx>éE>1 :(X 2

Yo ) Hx-6HE-D

ore

0 otherwise
(c) (6 points)

, 2

y —;y:f(x)

y@)=0
Method 1

By the principle of superposition, we suspect that a solution to this VP will be (2 points)

y=j;xf(f)ye(XIS)d§=j;xf(f)(g)zH(X—f)H(é-‘—l)cl§=j;xf(f)(g)zdf

We check this by plugging it into the ODE (2 points)

([r@E) a)-2 [r@3) ae=ro0+ 105 )ae-2 1o (3) ae=rm

So thisisindeed the solution. Setting f(x)= x° gives (2 points)

v= [&(%fac=x [(@ae= 22X

Method 2

If we couldn't do part (b), then we first find a solution to the homogeneous problem
2
LI - 0
y ” y
Using the same integrating factor we found in part (a) lets us write

(x2y)'=0
Integrating and simplifying gives (1 point)

y=AX
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(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)



To solve the inhomogeneous problem by variation of parameters we look for a solution of the form (1 point)

y () = x> u(x)
Plug thisinto the ODE

2
2 v 2 —
(X°u) Xx u="f(x)

Differentiate and simplify

x2u'=f(x)
Solve for U' and integrate

*f(t
u=A +f Q dt
1 t2
So the general solution is of the form (1 point)

y(x)=x2u(x)=Ax2+x2f ft(%dt
1

Theinitial condition gives:

O=y@M=A
So the solution to the inhomogeneous IVPis (1 point)

*f (1)
_ 2
y=X J;_tz dt

Setting f(t)=t° gives (2 points)

X 5 X XG_X4
y=x2 —Zdtzxzft3dt=
1 t 1 4

(d) (6 points)

' 2 5
y - X y=X
y@©)=0
Using the integration factor from part (a) gives

(x2y)' =x°
Integrating gives (3 points)

X
1
y:xZ(A+ft35lt)=Ax2+—x6
0 4

Theinitial datais automatically satisfied for any value of A

1
y(O):A02+ZOG:O

So there are infinitely many solutions, one for each choice of the arbitrary constant A(3 points).
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(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)



Problem 4 (4x6 points)
(a) (6 points)

For a>0 we have (1 point)

LI6t-a)]= f eSt§t—-aydt=e28
0

Transforming the series term by term gives (2 points)

L[Z D"st-@2n+ k)= Z (—1)" g~ @n+Dks
n=0

n=0

The sum of ageometric seriesis given by

> 1
271

For all |z|<1. Using thiswefind (3 points)

i(_l)n e—(2n+1)ks:e—ksi(_e—st)ﬂ _ e ks _ i 1 _ 1
ard l+e2ks 2 % 2Cosh(ks)

(b) (6 points)
Method 1

From the table of transforms given in class (3 points)

-1 _ -1 F _ !
LG =z (g)—j;f(x)clx
Method 2

Consider differentiating the inverse Laplace transform

d = d 1 C+ico E 1 C+ic0
.E_l(—)_ f ﬁ€StdS=—,f F(S)eStdszf(t)
c S 278 Jo i

dt s/ dt 2ni
Integrating this gives for some constant A (1 point)

— 00

_ el _ (R '
g=L1©G) =L (E)—A+j;f(x)dx

Notice that g'=f and that g(0)=A. Using the formula for the transform of a derivative (1 point)

F=L[f]=L[g]=sL[g] -9(0)=sG-A
This gives:

9=£‘1(G)=£‘1(§)=£‘1(G—%)=9—A

So we must have A=0. Hence (1 points)

L—l(g)zj:f () dx
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(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)



Regardless of which method is used, employing the function in part (a) we find (1 point):

L1 (2) = \[:f X) dx =

101
S DSt 2ns 1K) dx = > D H (- 2ns Dk 1 @n+Dk=t<(@n+3k (101)
fog(_) (t-n+ bl X‘g(_) t=@n+D0= 05 ans3k<t<@n+5k
Plotting (2 points)
k 3k 5k 7k 9k 11k
Figure2
(c) (6 points)
1 1 C+i00 eﬁ
-1 _
£ [ZsCosh(ks)]_ 2mi j;_im 2sCosh(ks) ds (102)
The roots of the denominator are s=0, and the roots of
kS 4 e7ks (103)
Letting s=at+bi, simplifying and setting the real and imaginary parts to zero gives
Cos(bk) Cosh(ak) =0 (104)

Sin(bk) Sinh(ak) =0

Since Cosh has no redl roots, the first equation is only satisfied for bk=(2n+1)z/2. The second equation then gives
Sinh(ak)=0. Theonly real root of Sinhis0, so a=0. Hence the roots of the denominator are s=0 and (1 point)

B @2n+nr
B 2k
These, together with s=0, are all on the imaginary saxis. So we can choose any ¢>0. Use the following contour

i forn=.,-2,-1,0,1,2, .. (105)

A

Figure3

This contour, call it I'g is composed of the Bromwich contour, a semicircular piece, and two horizontal parts
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[ 7cea
—————ds=
Y 2sCosh(ks) (10

Cc+iR €St €St iR est c—iR €St
—d —d —d —d
j;_m 2sCosh(ks) St fZSCosh(ks) S+\L£R 2sCosh(ks) S+j:iR 2sCosh(ks) S

R

We first show that the integrals on the horizontal portions vanish (1 point)

iR St
\[(:+iR 2sCosh(ks) dS‘ -

) (107)
1 0 e(XHR)t 1 C €Xt
= - - CIX‘ < = - - dx
. X+iR)Cosh(k(x+iR)) 2 Jo IX+iR||Cosh(kx+ikR)
A simpletrig identity gives:
|Cosh (kX + i k R)| = Cosh? (kx) Cos? (kR) + Sinh? (kx) Sin? (kR) = Cos? (kR) (108)
Also we have
1 _ 1 - 1
X+iRl Ve g R (109)
So we have:
€Xt C@Ct
(110

= . - dx <
2 Jo IX+iR||Cosh(kx+ikR)| 2RCos’ (kR)

This vanishes as R—o. A similar proceedure shows that the other horizontal part of the contour integral vanishes. We now
show that the integral on the the semicircular part of the contour vanishes (1 point).

€St 37/2 Re'f t ER@EQ 1 /2 Rt Cost
stCosh(ks) 49= fﬂ/z 2R e’ Cosh(KRe'?) ”M‘S Ef/z Coshkreiny 47 (1)
Cr
A trig identity gives:
|Cosh (kR e'?)| = Cos? (k RSin®) + Sinh? (kR Cos#) = Sinh? (kR Cos6) (112)

For £r/2,3n/2 this grows exponentially as R—. For 6=r/2 or 6=37/2 we have

|Cosh (kRe'")| = Cos” (kR) (113)
Which is bounded and non-zero as R—0 (except for certain special values of R). So we have:

371/2 eRtCosﬁ
S — T
fﬂ/z ConkRremy 107 (114)

by Jordan's Lemma since Cosf is non positive and we just showed that the denominator —co for all 6 except the endpoints
(which are unimportant to the integral since they are a set of measure zero).
We have shown:

1 Cc+iR €St 1 est
2ni »[;-m 2sCosh(ks) ds= 2ni fZSCosh(ks) ds (115)

I'r

By the residue theorem this last integral is the sum of the residues (1 point)

( e )+i R%( e @n+ )z ) 116
2sCosh(ks)’ — ZsCosh(ks) 2k ! (116)
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We now calculate these residues

St s st 1
Rm(“e—, o)z lim—>¢_ _ %

2sCosh(ks) -0 2sCosh(ks) 2
( e @n+n )
Res , =
2sCosh(ks) 2k
, o @i | . (117)
lim s—-2n+rmi/2K) e B Ke =z lim s—2n+1ni/2k B
s>@n+) 1if2k 2sCosh (k)  @n+Drmi ssenbrizk Cosh(ks)
eﬁnﬁmt 1 (— 1)n+1 @i o
- = e 2k
@n+Drmi gnh(w#) @2n+ D
So the inverse transform is (1 point)
D™ enam
gt = —+Z i € © (118)
Which by rearranging the terms in the sum and using a trig identity can be written (1 point)
1 & 2(-pmt @n+1nx
g(t)—§+2) iy Cos(~——1) (119)
(d) (6 points)
We plot the first two terms (2 points)
1,
k 3k 5k 7k 9k 11k
Figure4
This looks very similar to Figure 2 above.
Notice that the function is periodic (1 point)
gt+4k) =
1 & 2=t @n+1nx 1 & 2=t @n+1nx (120)
EJ’; @2n+n COS( 2k (t+4k))_§+§ @2n+rx COS( 2k t)_g(t)

which is exactly what we found in part (b).

Since this function has the same periodicity as and a similar appearance to the function found in part (b), we suspect that
this series converges to the result in part (b)(1 point).

Other things you might observe. (worth up to 2 points)

Things you may have earned points for:

Showing that the sum converges to a piecewise constant function.

Showing where tthat the minima and maxima of the sum converge to the plateaus of the step function or discussing other
geometric aspects of the function the series converges to.

Plotting more terms in the series and discussing the convergence.

Fourier transforming the answer from part (b) to get the answer in part (c).
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