ACM95b/100b Lecture Notes

Caltech 2004

Laplace Transform

$$\mathcal{L}\{f(t)\} \equiv F(s) \equiv \int_0^\infty e^{-st} f(t) dt \tag{1}$$

Examples

a) $f(t) = 1, t \ge 0$

$$\mathcal{L}\{1\} = \int_0^\infty e^{-st} dt = \lim_{b \to \infty} \frac{e^{-st}}{-s} \Big|_0^b = \frac{1}{s}$$

b) $f(t) = e^{at}, \ t \ge 0$

$$\mathcal{L}\lbrace e^{at}\rbrace = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{-(s-a)t} dt = \frac{1}{s-a}, \ s > a$$

Existence

The Laplace transform exists for s > a if:

- (1a) f is piecewise continuous on $0 \le t \le M$
- (2a) f is of exponential order as $t \to \infty$ (i.e. $|f(t)| \le Ke^{at}$, $t \ge M$, with K, a, M constant)

Writing

$$\int_0^\infty e^{-st} f(t) \, dt = \int_0^M e^{-st} f(t) \, dt + \int_M^\infty e^{-st} f(t) \, dt, \tag{2}$$

the first integral exists by (1a) and $|e^{-st}f(t)| \le Ke^{(a-s)t}$ for $t \ge M$ so if s > a, the second integral exists by (2a).

Linearity

$$\mathcal{L}\lbrace c_1 f(t) + c_2 g(t) \rbrace = c_1 \mathcal{L}\lbrace f(t) \rbrace + c_2 \mathcal{L}\lbrace g(t) \rbrace$$
(3)

Transforms of Derivatives

For existence of $\mathcal{L}\{f'(t)\}\$ for s>a we require

- (1b) f is continuous with f' piecewise continuous on $0 \le t \le M$
- (2b) f is of exponential order as $t \to \infty$. (i.e. $|f(t)| \le Ke^{at}$, $t \ge M$, with K, a, M constant)

If the discontinuities in f'(t) are located at $t_1, t_2, \dots t_n$ then

$$\mathcal{L}\lbrace f'(t)\rbrace = \int_0^\infty e^{-st} f'(t) dt = \underbrace{\left\{ \int_0^{t_1} + \int_{t_1}^{t_2} + \dots + \int_{t_n}^\infty \right\}}_{\text{integrate by parts}} e^{-st} f'(t) dt$$
(4)

$$= e^{-st} f(t) \underbrace{\left\{ \begin{vmatrix} t_1 \\ 0 \end{vmatrix} + \begin{vmatrix} t_2 \\ t_1 \end{vmatrix} + \dots + \begin{vmatrix} \infty \\ t_n \end{vmatrix} \right\}}_{s} + s \int_0^\infty e^{-st} f(t) dt$$
 (5)

$$= \underbrace{e^{-st}f(t)\Big|_{0}^{\infty}}_{\text{use (2b) and } s>a} + s\underbrace{\int_{0}^{\infty}e^{-st}f(t)\,dt}_{\mathcal{L}\{f(t)\}}$$

$$(6)$$

$$= -f(0) + s\mathcal{L}\{f(t)\}, \quad s > a \tag{7}$$

$$\mathcal{L}{f'(t)} = s\mathcal{L}{f(t)} - f(0), \quad s > a$$

For existence of $\mathcal{L}\{f^{(n)}(t)\}\$ for s>a we require

(1c) $f(t), \dots, f^{(n-1)}(t)$ is continuous with $f^{(n)}$ piecewise continuous on $0 \le t \le M$

(2c)
$$f(t), \dots, f^{(n-1)}(t)$$
 are of exponential order as $t \to \infty$.
(i.e. $|f(t)|, \dots, |f^{(n-1)}(t)| \le Ke^{at}, t \ge M$, with K, a, M constant)

and by induction we obtain

$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0), \quad s > a$$

Note that if $f(t), \dots, f^{(n-1)}(t)$ vanish at t = 0 then

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace = s^n \mathcal{L}\lbrace f(t)\rbrace \tag{8}$$

so differentiation in t space corresponds to multiplication in s space.

Convolution Integrals

Suppose f(t), g(t), and h(t) have transforms F(s), G(s), and H(s) for $s > a \ge 0$. If

$$H(s) = F(s)G(s) \tag{9}$$

then h(t) is the convolution of f(t) and g(t)

$$h(t) = f * g = \int_0^t f(t - \tau)g(\tau)d\tau,$$

= $g * f = \int_0^t f(\tau)g(t - \tau)d\tau.$ (10)

Hence, if H(s) can be expressed as a product of known transforms, h(t) can be expressed as a convolution integral. To sketch the proof of (10) we start with the product of transforms (9) and

seek to identify the form of h(t).

$$H(s) = F(s)G(s) = \int_0^\infty e^{-s\xi} f(\xi) d\xi \cdot \int_0^\infty e^{-s\tau} g(\tau) d\tau$$
 (11)

$$= \int_0^\infty g(\tau) \left[\int_0^\infty e^{-s(\xi+\tau)} f(\xi) d\xi \right] d\tau \tag{12}$$

$$= \int_{0}^{\infty} g(\tau) \left[\int_{0}^{\infty} e^{-s(\xi+\tau)} f(\xi) d\xi \right] d\tau$$

$$(\text{let } \xi=t-\tau \text{ so } d\xi=dt)$$

$$= \int_{0}^{\infty} g(\tau) \left[\int_{\tau}^{\infty} e^{-st} f(t-\tau) dt \right] d\tau$$

$$(13)$$

(reverse order of integration over triangular region)

$$= \int_{0}^{\infty} e^{-st} \underbrace{\left[\int_{0}^{t} f(t-\tau)g(\tau)d\tau \right]}_{\mathcal{L}^{-1}\{H(s)\} \text{ by definition}} dt$$

$$= \int_{0}^{\infty} e^{-st}h(t) dt$$
(14)

$$= \int_0^\infty e^{-st} h(t) dt \tag{15}$$

Reverse order of integration over triangular region