Maple worksheet by E.S. Phinney 3/9/2004 ACM95b/100b handout

Numerical solution to the Sturm-Liouville problem
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with y(0) = 0,y(1) =0, p(z) =1, q(x) = 0, i.e. y"”"+Ny = 0 (so exact eigenvalues
are A\, = m2n? and eigenfunctions ¢,,(z) = v2sin(mnz), m =1,2,3,.. ..
We do this by finding Rayleigh-Ritz minimum of
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or equivalently, the minimum of the numerator subject to the condition that the
denominator be equal to 1. To do this numerically, we use the Euler polygonal
approximation to y(z) and its derivatives and the integral. This is a simple
form of the Finite Element Method, for finding a simple Finite Difference ap-
proximation eq (6) to the ODE boundary value problem. Defining Az = 1/n

(number of grid points into which we have divided the interval [0,1]), we want
to minimize
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subject to 1 = yJZ-A:c (5)
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Write eq (4) out, and notice that for each k, y; appears in three terms (except at
the boundaries where it appears in two). The Rayleigh-Ritz extremum principle
says that we want to minimize R over all possible choices of y;. To take account
of the constraint, which makes one of the y; be determined by all the others, we
introduce a Lagrange multiplier A to uncouple it (just as we did in the continuous
case). Then taking /0y of the expression for R in eq (4) and setting it to
zero (Rayleigh-Ritz extremum) for each k, with boundary conditions yo = 0 and
yn = 0 gives

Yi+1 — 2y5 +yj—1 + AMAz’y; =0 (6)
This can be written as a band diagonal matrix (with band elements [1,—2 +
AAz? 1] as shown below) times the column matrix (y1,¥2,-- -, Yn—1)- We com-

pute numerical approximations to the eigenvalues A by evaluating the determi-
nant of this matrix for n = 5 (matrix A), n = 10 (matrix B) and n = 30 (matrix
C) below. We could also the solve for the y; for each eigenvalue, and get the
polygonal approximations to the eigenfunctions as well.



In the real world, one doesn’t use symbolic Maple for this sort of calculation,
but fast matrix solvers, specialised to sparse bands like this.
> with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

> A:= band([1,-2+lambda/25,1],4);
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> detofa := det(A);
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etofa:=5— A+ o5 15625 " ' 390625
> plot(detofa,lambda=0..100);
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> fsolve(detofa=0);
9.549150281, 34.54915028, 65.45084972, 90.45084972
> exacteigen:= [seq(j~2*Pi~2,j=1..3)];
> evalf(exacteigen);
ezacteigen = [r?, 472, 97?]
[9.869604404, 39.47841762, 88.82643964]



Comparing with the numerical eigenvalues found from the 5-grid point (4
nonzero grid points) approximation with the 5 x 5 matrix above, we see that
we made a 3% error in the first eigenvalue, 13% on the second and 27% on the
third. The bad performance on the last is hardly surprising: we are trying to
approximate a function with two nodes with only four numbers (circles in plot
of first 3 eigenfunctions below)!
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> B:= band([1,-2+lambda/100,1],9):
> detofb := det(B):
> plot(detofb,lambda=0..100);
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> fsolve(detofb=0,lambda=0..100);
9.788696741, 38.19660113, 82.44294954
> evalf(exacteigen);
[9.869604404, 39.47841762, 88.82643964]
C:=band([1,-2+1lambda/900,1],29):
detofc :=det(C):
plot (detofc,lambda=0..100);
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> fsolve(detofc=0,lambda=0..100);
9.860588337, 39.33431868, 88.09827067

> evalf(exacteigen);

[9.869604404, 39.47841762, 88.82643964]



