
ACM 95b/100b Final Exam
March 12, 2004 Due March 17, 2004
ACM 95b/100b 3pm in Firestone 307
E. Sterl Phinney (2 pts) Include grading section number

The honor code is in effect. Please follow all of the following instructions regarding this
exam. If you feel unclear about any of these instructions, you are required by the honor code
to ask for clarification.

• You may not communicate with any other person (except Prof. Phinney) about the
contents of this exam, until both you and the other person (if taking ACM95b/100b)
have submitted your exams. The Deans have given a few students extensions on the
exam, so please do not talk about it loudly in public, even after the due date.

• The exam must be completed in a single sitting of 4 hours.

• There are 5 problems, with point values (24, 10, 24, 24, 16) respectively. The point
values for each subpart are indicated at the start of each problem. The total exam is
worth 24+10+24+24+16+2 = 100 points (the 2 points are for writing your grading
section number on the cover of your blue book).

• Calculators, computers and related devices are not permitted.

• Closed book, computer off exam: with the exception of official lecture hand-
outs, problem set questions, and official problem set solutions from this course (2004
ACM95b/100b), only material written in your own hand may be used during the exam.

• Please write your exam in standard blue books and make sure your name and grading
section number (as assigned by the ACM95b/100b Underground) is clearly written
on the front of each blue book.

• You must sign in your completed exam in person to Maria Katsas in Firestone 307 by
3pm on Wednesday March 17.

Good luck!
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The artist (and the cartoonist, Sidney Harris) must have taken ACM95b/100b, since he
knows about Tn(x) [see problem 1d]!

Please be sure to write your (Underground-assigned) grading section number on the cover
of your bluebook, for 2 free points.

The exam starts on the next page.
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1. (4× 6 points)

a) Classify each of the following as either a Sturm-Liouville problem, or not. If it is
a Sturm-Liouville problem, further classify it as regular, periodic or singular.

y′′ + λxy = 0, y(0) = 0, y′(3) + y(3) = 0 (1)

x2y′′ + 2xy′ + (x2 − λ)y = 0, y(0) = 1, y′(6) + 2y(6) = 0 (2)

(1− x7)y′′ − 7x6y′ + λx7y = 0, y(0) = 0, y(1) = finite (3)

y′′ + [λ− 20 cos(2x)] y = 0, y(x) = y(x + 2π), y′(x) = y′(x + 2π) (4)

d

dx

(
x2 dy

dx

)
+ λy = 0, y(1) = 0, y(e) = 0 (5)

y′′ + 20(sech x)2y + λy = 0, y → 0 as |x| → ∞ (6)

b) Which one of the equations of part (a) arises as the radial equation in separation
of variables of ∇2u(r, θ, φ) = 0 in spherical coordinates (don’t consider boundary
conditions):

0 = ∇2u =
1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
? (7)

c) By finding a multiplying factor, put the following into Sturm-Liouville form:

(1− x2)y′′ − xy′ + λy = 0, y(−1) = finite, y(1) = finite (8)

d) Referring to your Sturm-Liouville form of eq (8):

i. What is the orthogonality condition obeyed by the eigenfunctions (call them
Tn(x)) of eq (8) with distinct eigenvalues?

ii. Could the eigenfunctions form a complete basis (for continuous, square-integrable
functions)? Why or why not?

iii. Are they guaranteed to be complete by theorems given in class?

3



2. (6 + 4 points)

a) Determine the eigenvalues λn and corresponding normalized eigenfunctions yn(x)
for

d

dx

(
x2 dy

dx

)
+ λy = 0, y(1) = 0, y(e) = 0 (9)

[hints: try solutions of the form y = xν . Things may simplify if you define
4λ− 1 = µ2. Remember that xib = exp(ib ln x). As a check, you should find that
λ4 = 16π2 + 1/4.]

b) By explicit calculation, verify that the following theorems about the eigenvalues
and eigenfunctions of a regular Sturm-Liouville problem apply to your solutions
of part (a):

i. There is an infinite number of discrete eigenvalues with no accumulation point
(λn →∞ as n →∞).

ii. There is a unique (up to a multiplicative factor) eigenfunction corresponding
to each eigenvalue.

iii. The eigenfunctions are orthogonal.

iv. The eigenfunctions are complete. [hint: do this by showing a relationship to
another familiar set of basis functions known to be complete].
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3. (4× 6 points)

a) Find the Green’s function G(x; t) for the differential operator

Ly =
d

dx

(
x

dy

dx

)
, y(0) = finite, y(1) = 0 (10)

(i.e. G(x; t) is the solution to LG = δ(x − t) for 0 < t < 1, 0 ≤ x ≤ 1) and give
the solution to the BVP

d

dx

(
x

dy

dx

)
= f(x), y(0) = finite, y(1) = 0 (11)

as an integral involving G(x, t) and f(t).

b) Verify that your Green’s function correctly gives the solution for f(x) = 1, which
is easily verified1 to be y(x) = x− 1? [hint:

∫
ln t dt = t ln(t)− t]

c) Find the Green’s function g(x, t) for the differential operator

Ly = y′′ + y, y′(0) = 0, y(1) = 0 (12)

(i.e. g(x, t) is the solution to Lg = δ(x − t) for for 0 < t < 1, 0 ≤ x ≤ 1), and
give the solution to the BVP

y′′ + y = f(x), y′(0) = 0, y(1) = 0 . (13)

on 0 ≤ x ≤ 1 as an integral involving g(x, t) and f(t).

d) If we modify the right boundary condition of the previous part to y(π/2) = 0,
does there exist a solution on 0 ≤ x ≤ π/2 to the BVP

y′′ + y = f(x), y′(0) = 0, y(π/2) = 0 . (14)

for arbitrary continous functions f(x)? Why or why not?

1If you get agreement, you can be proud of yourself: in the 3rd edition of Arfken, he didn’t get agreement,
and devoted a whole page to a ‘rigorous’ (and incorrect) proof [p. 906-907] of why it shouldn’t work. This
problem illustrates that Green’s functions can work even with boundary conditions at a singular point.

5



4. (4× 6 points)

Your sweetie gives you a thin metal ring of circumference 2π in some units. Unfortu-
nately the jeweler who made it confused plutonium with palladium, and also didn’t
mix the alloy well, so the plutonium fraction is not uniform around the ring. You
notice the ring getting kind of hot, and want to figure out how it heats up.

Let u(x, t) describe the temperature of the ring, where −π < x ≤ π is the circumfer-
ential coordinate, and t is time. Because of the plutonium, the ring has nonuniform
internal heating, and its temperature is therefore described by

ut = κuxx − σu + f(x) (15)

where κ > 0 is the constant thermal diffusivity, σ > 0 is the constant coefficient of
heat loss to your finger, and f(x) describes the heating by plutonium decay. Suppose
u(x, 0) = 0.

a) Because it is defined on a ring, the temperature must be a 2π periodic function
of x. This suggests that you should write the temperature as Fourier expansion
with time-dependent coefficients,

u(x, t) =
∞∑

n=−∞

An(t)einx (16)

You may also assume f(x) can be represented by a similar Fourier series (with
time-independent coefficients). Find the ordinary differential equations and initial
conditions obeyed by each An(t).

b) Solve the equations you found in part (a) for each An(t).

c) Suppose f(x) = cos2(x). Find an explicit solution for u(x, t). [hint: 2 cos2 x =
(1 + cos(2x)), and only three of the An are nonzero.]

d) Something goes wrong with the solutions you found in the previous two parts as
σ → 0. Find the correct solution when σ = 0 for general f(x) (i.e. part (b)), and
for the particular case f(x) = cos2(x) (part(c)), and explain the results physically.
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5. (6 + 5 + 5 points)

The soil has a periodically varying surface temperature T (0, t) (modulated on a 24-
hour cycle, and also on a 1-year seasonal cycle). How does the soil temperature T (z, t)
vary below the surface2? To simplify the equations, we let T0 be the mean surface
temperature, let the soil surface be at z = 0, measure depth below the surface with
coordinate z > 0, let the soil’s thermal conductivity κ be constant, and define

T (z, t) ≡ T (z, t)− T0 . (17)

Then the desired T (z, t) is governed by the heat equation and the specified boundary
conditions 3 for −∞ < t < ∞:

∂T

∂t
= κ

∂2T

∂z2
, (18)

T (0, t) = ∆T sin ω0t , (19)

T (∞, t) = 0 . (20)

Take ω0 > 0 and ∆T constant.

a) Fourier transform in time equation eq (18) and its boundary conditions, to de-
rive the equation for the Fourier transform T̂ (z, f) of T (z, t), and the Fourier
transforms of the boundary conditions T̂ (0, f) and T̂ (∞, f).

b) Solve your equations of part (a) for T̂ (z, f) (hint: make sure you treat positive
and negative Fourier frequencies separately, and check that your solution satisfies
the boundary condition in each case).

c) Do the inverse Fourier transform to find T (z, t). You should find4 that

T (z, t) = T − T0 = ∆T exp
(
−z

√
ω0/(2κ)

)
sin

(
ω0t− z

√
ω0/(2κ)

)
. (21)

2The answer, which you will derive here, is of considerable importance to desert fauna, hibernating
animals, the Alaskan and Siberian construction industry, and the designers of the thermal storage system
under construction outside Braun gym.

3ω0 = 2π/(24 hours) ≡ ω1 is of primary interest to desert animals, and ω0 = 2π/(1 year) ≡ ω2 is of
primary interest to housing contractors in permafrost regions.

4After the exam, you may be interested to put κ ∼ 3× 10−7m2s−1 for rock and packed soil, and find the
depths in meters at which the temperature variation is reduced to 1/e of its surface value for the daily and
for the annual temperature cycles. You can also check that when the surface BC of equation (19) is replaced
by the real-world simultaneious sum of both cycles, T (0, t) = ∆T1 sinω1t + ∆T2 sin(ω2t + φ2), that you can
get the solution for this case by simple linear superposition of two solutions like eq (21). You might also like
to think about the origin of the sinusoid: why are there depths that are colder in daytime/summer than at
night/winter (these layers can actually be measured at stably stratified ocean depths)? Could you design a
system that makes some interesting use of these?
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