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INTRODUCTION

Information geometry is the result of applying the ideas of non-Euclidean geometry to proba-
bility theory. Although interest in this subject can be traced back to the late 1960’s, it reached
maturity only through the work of Amari in the 1980’s. His book [1] is still the canonical
reference for anyone wishing to learn about it.

One of the fundamental questions information geometry helps to answer is: ‘Given two
probability distributions, is it possible to define a notion of “distance” between them?’ An im-
portant application in neural networks is the gradient descent learning rule, which is used to
minimize an error function by repeatedly taking small steps in parameter space. Traditionally,
this space was tacitly assumed to have a trivial (flat) geometry. Information geometry shows
that this assumption is false, and provides a theoretical recipe to find a gradient descent-style
rule for any given network which can be shown to be optimal. In this way it promises a poten-
tially dramatic improvement of learning time in comparison to the traditional rule.

In the present work, I describe some of the basics of information geometry, with the appli-
cability to neural networks as a guide. Since my background in theoretical physics has given
me more intuition about geometry than about probability theory, this text takes geometry rather
than probability as its starting point. Having said that, I have avoided using the abstract lan-
guage of modern differential geometry, and opted for the slightly less austere framework of
Riemannian geometry. Appendix A introduces all the geometric concepts used in the main
text, with the aim of making it accessible for readers with little previous experience with non-
Euclidean geometry. That said, I have to admit that the appendix is rather compact, and that
textbooks may offer a more gentle introduction into the subject. For example, [2] is a definite
recommendation.

The rest of this text is laid out as follows: chapter 1 sets up the basic framework of information
geometry, introducing a natural metric and a class of connections for families of probability
distributions. Chapter 2 sets out to define some notions of duality in geometry which have a
major impact on information geometry. In chapter 3 the results of the previous chapters are
used to devise a more natural algorithm for parametric gradient descent that takes the geometry
of the parameter space into account. Finally, in chapter 4 the properties of the metric introduced
in chapter 1 are investigated in more detail, and a proof is sketched of the uniqueness of this
metric.

I’d like to thank Ton Coolen for introducing me to this fascinating subject and for many useful
discussions, Dr Streater for his thorough reading of the drafts, Dr Corcuera for sending me a
preprint of his article on the classification of divergences and Dr Amari for bringing this article
to my attention.
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NOTES ON NOTATION

� Throughout this text we shall employ the Einstein summation convention, that is, sum-
mation is implied over indices that occur once upstairs and once downstairs in an expres-
sion, unless explicitely stated. For example, we write

xiyi
� ∑

i

xiyi �

In some cases we shall be less than scrupulous about re-using indices that are bound by
implicit summation. We might for example write something like

d
dt

etxiyi � xiyi etxiyi �

where the three pairs of i’s are supposed to be completely independent.

� We shall sometimes use the notation
f
�
P

to denote ‘the function f , evaluated at the point P’. This is intended to leave equations
more transparent than the notation f � P � , and has no other significance.

� We shall use boldface to denote vectors in � n, e.g. x � � xi � n
i 	 1. Vectors on manifolds (see

appendix A.1) will be denoted by italic uppercase letters, e.g. X � X µ êµ
1).

� The distinction between downstairs and upstairs labels shall be important throughout this
text, as usual when dealing with Riemannian geometry2) .

� We shall use greek indices µ, ν, �
�
� to enumerate coordinates on manifolds.

1)For the benefit of those readers not well acquanted with differential geometry, we shall avoid writing vectors as
differential operators, X � Xµ∂µ . This has the unfortunate side effect of making a small number of statements less
immediately obvious. Where appropriate the differential operator form of equations shall be given in footnotes.

2)In appendix A we review the fundamentals of Riemannian geometry as needed for the main text.
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CHAPTER 1

INFORMATION GEOMETRY

As mentioned in the introduction, information geometry is Riemannian geometry applied to
probability theory. This chapter, which introduces some of the basic concepts of information
geometry, does not presuppose any knowldege of the theory of probability and distributions.
Unfortunately however, it does require some knowledge of Riemannian geometry. The reader
is referred to appendix A for a brief introduction intended to provide the necessary background
for this chapter.

1.1 Probability distributions

We shall begin by defining what we mean by a probability distribution. For our purposes, a
probability distribution over some field (or set) X is a distribution p : X � � , such that

���
X dx p � x � � 1;

� For any finite subset S � X , � S dx p � x ��� 0.

In the following we shall consider families of such distributions. In most cases these fam-
ilies will be parametrized by a set of continuous parameters � � � θ µ � N

µ 	 1, that take values in
some open interval M � � N and we write p � to denote members of the family. For any fixed � ,
p � : x 	� p � � x � is a mapping from X to � .

As an example, consider the Gaussian distributions in one dimension:

p 
 µ � σ � � x � � 1

2π σ

e � 1
2

 x � µ � 2 � σ2 �

In this case we may take � � � θ1 � θ2 � � � µ � σ � as a parametrization of the family. Note that
this is not the only possible parametrization: for example � θ1 � θ2 � � � µ

σ2
� 1

σ2 � is also commonly
used.

1.2 Families of distributions as manifolds

In information geometry, one extends a family of distributions, F ��� p � � ��� M � , to a manifold
M such that the points p � M are in a one to one relation with the distributions p � F . The
parameters � θµ � of F can thus also be used as coordinates on M . In doing so, one hopes to
gain some insight into the structure of such a family. For example, one might hope to discover
a reasonable measure of ‘nearness’ of two distributions in the family.
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8 INFORMATION GEOMETRY

Having made the link between families of distributions and manifolds, one can try to iden-
tify which objects in the language of distributions naturally correspond to objects in the lan-
guage of manifolds and vice versa. Arguably the most important objects in the language of man-
ifolds are tangent vectors. The tangent space T� at the point in M with coordinates � θµ � is seen
to be isomorphic to the vector space spanned by the random variables1) ∂ log p � 
�� �

∂θµ , µ � 1 �
�
� N.

This space is called T

 1 �� . A vector field A � � � � T � M � :

A : � 	� A � � � � Aµ � � � êµ (1.1)

thus is equivalent to a random variable A � ��� � � T

 1 � � M � :

A � � x � � Aµ � � � ∂ log p � � x �
∂θµ � (1.2)

(Just as T � M � is the space of continuously differentiable mappings that assigns some vector

A � � � � T� to each point � � M , T

 1 � � M � assigns a random variable A � � T


 1 �� .)
In view of the above equivalence we shall not find it necessary to distinguish between the

vector field A and the corresponding random variable A ��� � .
(1.2) is called the 1-representation of the vector field A. It is clearly possible to use some

other basis of functionals of p � instead of ∂ log p �
∂θµ . Our present choice has the advantage that the

1-representation of a vector has zero expectation value:

E
� ∂ log p �

∂θµ � ���
X

dx p � � x � ∂ log p � � x �
∂θµ

� �
X

dx
∂p � � x �

∂θµ
� ∂

∂θµ
�
X

dx p � � x � � ∂
∂θµ 1 � 0 �

Using other functionals can be useful, and in fact the 1-representation turns out to be just one
member of the family of α-representations [1].

In order to simplify notation, we shall use	
� � � � log p �

in the following. (The argument to

	
shall be omitted when obvious from the context.) Note

that

	
� � � is a random variable, i.e. a function from X to � :

	
� � � : x 	� log p � � x � .

We shall also use the shorthand

∂µ
� ∂

∂θµ �

1.3 Distances between distributions: a metric

In several applications we are interested in distances between distributions. For example, given
a distribution p � M and a submanifold S � M we may wish to find the distribution p 
 � S
that is ‘nearest’ to p in some sense. To give a specific example: suppose M is a large family
of distributions containing both the gaussian and the binomial distributions of one variable as

1)A random variable in this context is just a function from X to � .
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subsets. One may wish to approximate a given binomial distribution by the ‘nearest’ exponen-
tial distribution. For this particular case, of course, an approximation formula has been found
long ago. However, a general framework for constructing such approximations is seen to be
useful. For all such tasks we need a notion of distance on manifolds of distributions. In other
words we need a metric.

It turns out that the following is a suitable metric for manifolds of distributions:

Definition: The Fisher metric on a manifold of probability distributions is defined as

gµν � � � � E
�
∂µ

	
� � � ∂ν

	
� � � � � (1.3)

Obviously, this also gives us an inner product: for vector fields A and B we have:�
A � B ���� � � gµνAµ� Bν� � E

�
Aµ� ∂µ

	
� � � Bν� ∂ν

	
� � � � � E

�
A � B � � �

This last form is known to statisticians as the Fisher information of the two random variables
A � and B � . It is related to the maximum amount of information that can be inferred about A �
and B � by a single measurement through the Cramér-Rao theorem, which we shall not discuss.

At first sight, the definition (1.3) may seem rather ad hoc. However, it has recently been
proven by Corcuera and Giummolè [3] to be unique in having the following very appealing
properties:

� gµν is invariant under reparametrizations of the sample space X ;

� gµν is covariant under reparametrizations of the manifold (the parameter space).

This uniqueness will be used later to prove the optimality of the gradient descent rule based on
the Fisher metric. The full proof as given in [3] is rather involved. In chapter 4 we shall present
an outline of the proof, plus a glossary of the terminology needed to understand [3].

Before going on, let us note that the metric may also be written as

gµν
�

� E
�
∂µ∂ν

	
� � � � �

since

E
�
∂µ∂ν

	
� � �

X

dx p ∂µ

�
1
p

∂ν p � � �
X

dx � ∂µ∂ν p �

1
p

∂µ p∂ν p �
� 0 �

�
X

dx p

�
1
p

∂µ p � �
1
p

∂ν p � �
� E

�
∂µ

	
∂ν

	
� � (1.4)

Example: Metric for a single neuron
Consider a single N-input binary neuron with output defined as follows:

y � t � � sgn � tanh βh � x �
	 η � t ��� � (1.5)

with

h � x � � N

∑
i 	 1

Jixi 	 J0 �
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In these formulas, J i are connection weights, J0 is the external field or bias, xi are the
(real valued) inputs, and η � t � is a source of uniform random noise in � � 1 � 1 � .
From (1.5) we immediately find that

pJ � y � x � � 1
2
	 1

2
y tanh βh � x � (1.6)

Since pJ � y � x � � pJ � y � x � p � x � , we find	
� J � � log pJ � y � x � � log pJ � y � x � � log � 1 	 y tanh βh � x ��� �

Introducing x0
� 1, we may write h � x � � ∑N

µ 	 0 Jµxµ
� J � x, to find

∂µ

	
� J � � y

1 	 y tanh βh � x � � 1 � tanh2 βh � x ��� βxµ � (1.7)

Therefore

gµν � J � � ∑
x � � � 1 � 1 � N ∑

y � � � 1 � 1 �
p � x � pJ � y � x � ∂µ

	
∂ν

	
� ∑

x
∑
y

1
2

p � x � y2

1 	 y tanh βh � x � � 1 � tanh2 βh � x ��� 2β2xµxν �

Noting that y ��� 1 implies y2 � 1, and using the relation

1
1 	 tanhx

	 1
1 � tanhx

� � 1 � tanhx �
	 � 1 	 tanhx �
1 � tanh2 x

� 2

1 � tanh2 x
�

this can be simplified to

gµν � J � � ∑
x � � � 1 � 1 � N

p � x � � 1 � tanh2 � βJ � x � � β2xµxν � (1.8)

Unfortunately, finding the contravariant form of the metric, gµν , is non-trivial since the
matrix inverse of (1.8) cannot easily be computed for generic p � x � .

1.4 Affine connection on a statistical manifold

In this section we shall introduce a family of affine connections based on the 1-representation of
vectors on a statistical manifold. These connections have been named α-connections by Amari
in [1].

As shown in appendix A.5, an affine connection provides a means of comparing vectors
at nearby points, thus providing a non-local notion of parallelism. Through the related notion
of affine geodesic, it also provides a notion of straight line between two points in a manifold.
We noted that an affine connection is defined by a mapping from the tangent space at P 
 with
coordinates � 	 δ � to the tangent space at P with coordinates � .
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In the 1-representation, the former space, T

 1 �

P � , is spanned by the basis

∂µ

	
� � 	 δ � � � ∂µ

	
� � �
	 δθν∂µ∂ν

	
� � �
	 O � δθνδθµ � � (1.9)

In trying to construct a connection, we seek a mapping from these functions to some functions
in T


 1 �
P , which is spanned by

∂µ

	
� � � � (1.10)

It is quite clear that the functions (1.9) cannot be expressed as linear combinations of (1.10),
since the expectation values of the latter vanish, while E

�
∂µ∂ν

	
� � � � certainly does not vanish.

There are several ways to cure this problem.
One is to add gµνδθν to (1.9), yielding

∂µ

	
� � ��	 �

∂µ∂ν

	
� � �
	 gµν � δθν � (1.11)

which has vanishing expectation value, but still does not yet necessarily belong to T

 1 �

P . This

we repair by bluntly projecting it down to T

 1 �

P . Since the projection of any random variable

A � ��� � down to T

 1 �

P is given by

A 
� � x � � E
�
A � � x � ∂ν

	
� x; � � � gµν � � � ∂µ

	
� x; � � � 1)

we find that

φ : ∂µ

	
� � 	 δ � � 	� ∂µ

	
� � ��	 E

���
∂µ∂ν

	
� � ��	 gµν � � � � δθν∂ρ

	
� � � � gρλ � � � ∂λ

	
� � � (1.12)

is a suitable projection from T

 1 �

P � into T

 1 �

P . As gµν is an expectation value itself, the expectation
value of the second term in braces factorizes, and since the expectation value of ∂λ

	
is zero,

this term actually vanishes. The resulting connection therefore is

Γµν
λ � E

�
∂µ∂ν

	
gρλ ∂ρ

	
� � E

�
∂µ∂ν

	
∂ρ

	
� gρλ � (1.13)

However, there are other possibilities: (1.12) is not the only projection of T

 1 �

P � to T

 1 �

P . Since
the expectation value of the combination

∂µ∂ν

	
	 ∂µ

	
∂ν

	
vanishes (see (1.4)), we may consider

∂µ

	
� � �
	 �

∂µ∂ν

	
� � ��	 ∂µ

	
∂ν

	
� δθν (1.14)

as a replacement for (1.11)2). Projecting this down to T

 1 �

P yields

Γµν
λ � E

���
∂µ∂ν

	
	 ∂µ

	
∂ν

	
� gρλ ∂ρ

	
� � E

�
∂µ∂ν

	
∂ρ

	
	 ∂µ

	
∂ν

	
∂ρ

	
� gρλ � (1.15)

Obviously, any linear combination of (1.11) and (1.14) also has vanishing expectation value,
so we have in fact found an entire family of connections, which are called the α-connections:

1)cf. X � Xµ êµ � Xµ ��� X � êν 	 gµν .
2)Note the subtle difference between adding gµν and adding ∂µ 
 ∂ν 
 without taking expectation value straight-

away.
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Definition: α-connection
The α-connection on a statistical manifold is defined as

Γ

 α � λ
µν � E

�
∂µ∂ν

	
∂ρ

	
	 1 � α

2
∂µ

	
∂ν

	
∂ρ

	
� gρλ � (1.16)

As an aside, we show that the metric connection is the same as the 0-connection:

Γ(metric)
µνρ

� 1
2

�
∂µgνρ 	 ∂νgµρ � ∂ρgµν �

� 1
2
� dx

�
∂µ � p∂ν

	
∂ρ

	
� 	 ∂ν � p∂µ

	
∂ρ

	
� � ∂ρ � p∂µ

	
∂ν

	
� �

� 1
2
� dx p � 1

p
∂µ � p∂ν

	
∂ρ

	
� 	 1

p
∂ν � p∂µ

	
∂ρ

	
� �

1
p

∂ρ � p∂µ

	
∂ν

	
� �

� 1
2
� dx p

�
∂µ

	
∂ν

	
∂ρ

	
	 2∂µ∂ν

	
∂ρ

	
�

� 1
2

E
�
∂µ

	
∂ν

	
∂ρ

	
� 	 E

�
∂µ∂ν

	
∂ρ

	
� � Γ


 0 �
µνρ �

We may therefore write
Γ

 α �
µνρ � Γ(metric)

µνρ 	 αTµνρ
� (1.17)

where

Tµνρ
�

�

1
2

E
�
∂µ

	
∂ν

	
∂ρ

	
� �

We round this of chapter with another example.

Example: Continuing our previous example, we may compute the α-connection for a single
binary neuron: differentiating (1.7) again, we find:

∂µ∂ν

	
�

�

�
1 � tanh2 βh � x � � xµxν

after some straightforward calculations. Similar calculations yield

∂µ∂ν

	
∂ρ

	
�

�

y
1 	 y tanh βh � x �

�
1 � tanh2 βh � x � � 2

β3xµ xνxρ
�

and
∂µ

	
∂ν

	
∂ρ

	
� y� 1 	 y tanh βh � x ��� 3 �

1 � tanh2 βh � x � � 3
β3xµxνxρ �

Taking expectation values gives us

E
�
∂µ∂ν

	
∂ρ

	
� � 0 �

and
E
�
∂µ

	
∂ν

	
∂ρ

	
� � ∑

x
p � x � tanh βh � x � � 1 � tanh2 βh � x � � β3xµxνxρ �

Therefore,

Γ

 α �
µνρ � 1 � α

2 ∑
x

p � x � tanh βh � x � � 1 � tanh2 βh � x � � β3xµxνxρ � (1.18)

Since we haven’t been able to compute gµν , we cannot give Γ

 α � λ
µν either.



CHAPTER 2

DUALITY IN DIFFERENTIAL GEOMETRY

In this chapter we shall investigate the notions of dual connections and dual coordinate systems.
The link with chapter 1 will be made at the very end, when we discover the duality properties
of the α-connections.

The key result of this chapter will be the introduction of ‘divergence’, which we shall find
to be a measure of the difference between two distributions. For computational purposes the
divergence as the important advantage over the Riemannian distance, that it may be calculated
without integration along a geodesic.

Most of the ideas presented in this chapter may also be found in [1].

2.1 Dual connections

Consider vector fields X and Y that are defined on a curve γ � M as the parallel transports of
the vectors X � 0 � � X

�
γ 
 0 � and Y � 0 � � Y

�
γ 
 0 � relative to some affine connection Γµνρ. Parallel

transport does not necessarily preserve inner product, that is�
X � t � � Y � t � ���� �

X � 0 � � Y � 0 � �
in general. A connection for which the inner product between any pair of vectors is preserved
across parallel transport is called a metric connection.

For non-metric connections, it may be possible to find another connection, say Γ �µνρ, such
that �

X � t � � Y � � t � � � �
X � 0 � � Y � 0 � � � (2.1)

where Y � � t � is the parallel transport of Y
�
γ 
 0 � relative to Γ �µνρ. If (2.1) holds for any two vec-

tors X and Y , then the connections Γµνρ and Γ �µνρ are said to be dual to each other1). Metric
connections may then be called self-dual.

Duality of connections may be locally defined as follows:

Definition: Two covariant derivatives ∇ and ∇ � (and the corresponding connections Γµνρ and
Γ �µνρ) are said to be dual to each other when for any three vector fields X , Y and Z:

Xµ∂µ
�
Y � Z � � �

∇XY � Z � 	 �
Y � ∇ �X Z � � (2.2)

1)The notion of a dual connection was introduced in a slightly different manner originally: even in the absence
of a metric, one might try to find a way to transport a 1-form ω such that ω � X � remains constant along any curve if
X is transported parallel to that curve. It was found that this is indeed possible, and the connection that transports ω
as required was named the dual to the connection used for the parallel transport of X .

13
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Theorem: There exists a dual to any affine connection. This dual is unique, and the dual of
the dual is the connection itself.

Proof: Substituting X � êµ , Y � êν and Z � êρ in the definition, we find

∂µgνρ
� Γµνρ 	 Γ �µρν

� (2.3)

from which all three claims follow directly. �
Note that the essential step in this proof is: if (2.3) holds for two connections Γµνρ and Γ �µρν,
then they are indeed dual in the sense of (2.2). This equivalence between (2.3) and (2.2) will
be important in the proof of the next lemma as well.

Lemma: Any pair of connections ∇ and ∇ � satisfying (2.1) for any vector fields X and Y � and
any curve γ also satisfies the differential definition of duality, and vice versa.

Proof:� Start out with (2.1) for infinitesimal t, so that we may expand:

Xµ � t � � Xµ �
t 	 0 � t

�
Γλν

µ θ̇λ Xν � t 	 0 	 O � t2 � �
Y � µ � t � � Y µ �

t 	 0 � t
�
Γ �λν

µ θ̇λY ν � t 	 0 	 O � t2 � �
gµν � t � � gµν �� t 	 0 	 t

�
∂λ gµν θ̇λ � t 	 0 	 O � t2 � �

where ˙ denotes differentation with respect to t.

Inserting these Taylor expansions into (2.1), we find

0 � d
dt

� Xµ � t � Y � ν � t � gµν � t ���
� �

� Γλρ
µ θ̇λ XρY νgµν � XνΓ �λρ

νθ̇λY ρgµν 	 XµY ν∂λ gµν θ̇λ � t 	 0
	 O � t �

� ���
� Γλµν � Γ �λνµ 	 ∂λ gµν � XµY ν θ̇λ � t 	 0 �

Since this is supposed to hold for any vectors X and Y and any curve γ , we may conclude
that the first factor on the right hand side must be zero, proving (2.3), and thereby duality
of ∇ and ∇ � .� We shall show that the left hand side of (2.1) cannot differ from the right hand side if
Γµνρ and Γ �µνρ are dual connections. Let the curve γ be parametrized by � � � � t � , and
denote the tangent vector field to γ by ˙� � T � M � . Since X and Y � are defined as parallel
transports along γ , we have

∇˙� X � t � � ∇ �̇� Y � � t � � 0 �
Therefore

d
dt

�
X � t � � Y � � t � � � dθµ

dt
∂

∂θµ

�
X � � � t �
� � Y � � � � t �
� �

� ˙� µ∂µ
�
X � � � t �
� � Y � � � � t �
� �

� �
∇˙� X � t � � Y � � t � � 	 �

X � t � � ∇ �̇� Y � � t � �
� 0 	 0 � 0 �

Taking the integral with respect to t yields (2.1). �
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2.2 Dual flatness

A manifold is flat with respect to an affine connection when there is a set of coordinates such
that Γµν

ρ � 0. The following theorem links flatness with respect to a connection and flatness
with respect to its dual:

Theorem: Dual flatness
When a manifold is flat with respect to an affine connection, it is also flat with respect to
its dual.

This theorem follows from the following lemma:

Lemma: When Γµν
ρ and Γ �µν

ρ are dual connections, their curvatures obey the following rela-
tionship:

Rµνρλ
�

� R �µνλρ �
Proof: From its definition (A.11), we see that it is possible to write the curvature as

Rµνρλ
� �

∇µ∇ν êρ
� êλ � �

�
µ � ν � �

since
∇µ

�
Γνρ

λ êλ � � �
∂µΓνρ

λ � êλ 	 Γνρ
λ ∇µ êλ �

Using definition (2.2) twice, we find

Rµνρλ
�

�
∂µ

�
∇νêρ

� êλ � �

�
∇ν êρ

� ∇ �µ êλ � � �

�
µ � ν �

�
�

∂µ∂ν
�
êρ

� êλ � � ∂µ
�
êρ

� ∇ �ν êλ � � ∂ν
�
êρ

� ∇ �µ êλ � 	 �
êρ

� ∇ �ν ∇ �µ êλ � � �

�
µ � ν �

�
�

0 � 0 � 0 	 �
êρ

� ∇ �ν ∇ �µ êλ � � �

�
µ � ν �

� �
∇ �ν ∇ �µ êλ

� êρ � �

�
µ � ν � � R �νµλρ�

� R �µνλρ � �

2.3 Dual coordinate systems

On a dually flat manifold, there exist two special coordinates systems: the affine flat coordinates
for each of the connections. These coordinate systems are related to one another by a duality
relation of their own: they are dual coordinate systems:

Definition: Dual coordinate systems
Two coordinate systems � θµ � and � θ̃ν̃ � are said to be dual to one another when their
coordinate basis vectors satisfy: �

êµ
� ẽν̃ � � δ ν̃

µ
�

where êµ and ẽν̃ the coordinate basis vectors for the � and ˜� systems respectively.
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Note that we use lower indices to denote the components of ˜� . At the present stage, this has
no other significance than notational convenience: it will, for example, allow us to stick to the
usual summation convention.

For � θµ � and � θ̃ν̃ � to be dual to one another, they need not necessarily be affine coordinate
systems. However there is no guarantee for general manifolds that a pair of dual coordinate
systems exists.

We shall investigate some of the properties of dual coordinate systems.

2.3.1 Relation of the metrics

We may express � and ˜� in terms of one another:

� � � � ˜� � � ˜� � ˜� � � � �
The coordinate basis vectors are therefore related by

êµ
� ∂θ̃ν̃

∂θµ ẽν̃ � ẽµ̃ � ∂θν

∂θ̃µ̃
êν

1) �

Using these relations, we may express the metrics gµν
� �

êµ
� êν � and gµ̃ ν̃ � �

ẽµ̃ � ẽν̃ � induced
by the coordinate systems in terms of the Jacobians:

gµν
� �

êµ
� êν � � ∂θ̃ν̃

∂θµ

�
ẽν̃ � êν � � ∂θ̃ν̃

∂θµ δ ν̃
ν
� (2.4a)

and

g̃µ̃ ν̃ � �
ẽµ̃ � ẽν̃ � � ∂θµ

∂θ̃µ̃

�
êµ

� ẽν̃ � � ∂θµ

∂θ̃ν̃
δ µ̃

µ � (2.4b)

Noting that the Jacobians � Jµν̃ � � �
∂θ̃ν̃
∂θµ � and � Jµ̃ν � � �

∂θν

∂θ̃µ̃
� are each other’s matrix inverse, we

find that � g̃ν̃µ̃ � and � gµν � are also each other’s matrix inverse. Since the matrix inverse of � gµν �
is known to be the contravariant form of the metric, � gµν � , we find that g̃µ̃ ν̃ � δ µ̃

µ δ ν̃
ν gµν . In fact,

this means that any tensor T expressed in � -coordinates as T µ1 � � � µm ν1 � � � νn , may be re-expressed
in ˜� -coordinates as

T µ̃1 � � � µ̃m
ν̃1 � � � ν̃n

� δ µ̃1
µ1 �
�
� δ µ̃m

µm
δν1

ν̃1 �
�
� δνn
ν̃n

T µ1 � � � µm
ν1 � � � νn �

At this stage it is obvious that we may as well clean up our notation by dropping the distinction
between labels with and without tildes2).

The following theorem allows us to find the functional form of � � � � ˜� � and ˜� � ˜� � � � :
1)Again these relations are obvious in the differential operator formalism: they follow directly from êµ � ∂

∂θµ

and ẽν � ∂
∂θ̃ν̃

2)This explains why we chose to put the contravariant labels in the ˜�
coordinate system downstairs. The transfor-

mation between
�

and ˜�
coordinates is equal to the identity only when covariant labels are replaced by contravariant

ones and vice versa at the same time. The present convention means that we do not have to change upstairs labels
into downstairs labels, thus avoiding a lot of confusion.
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Theorem: When � θµ � and � θ̃µ � are dual coordinate systems, there exist potential functions
Θ � � � and Θ̃ � ˜� � such that

θµ � ∂̃µΘ̃ � ˜� � and θ̃µ
� ∂µΘ � � � � (2.5)

It follows that
gµν

� ∂µ∂νΘ � � � and g̃µν � ∂̃µ ∂̃νΘ̃ � ˜� � � (2.6)

Furthermore,
Θ � � �
	 Θ̃ � ˜� � � θµ θ̃µ � (2.7)

Conversely, when a potential function Θ � � � exists such that gµν
� ∂µ∂νΘ � � � , (2.5) yields

a coordinate system � θ̃µ � which will be dual to � θµ � , and (2.7) may be used to derive the
other potential function Θ̃ � ˜� � .

Proof: Symmetry of the metric gµν
� ∂µ θ̃ν � � � shows that ∂µ θ̃ν � ∂νθ̃µ

� 0, from which we may
conclude that, at least locally, ˜� � � � is the derivative of some function, i.e. there exists a
function Θ � � � such that θ̃µ

� ∂µΘ. (2.6) follows directly from inserting (2.5) into (2.4a)
and (2.4b). Finally, (2.7) is a general fact about Legendre transforms.

The other direction is easy: when gµν
� ∂µ∂νΘ � � � , we see that � θ̃µ � � � ∂µΘ � � �
� is dual

to � � � from the fact that

ẽν ����� ∂θ̃
∂θ � � 1 � νµ

êµ
� � � gµν � � 1 � µν êµ

�

whence
�
ẽν � êµ � � δν

µ , proving duality. �
Example: Binary neuron

Recall that for a binary neuron we obtained

gµν � J � � ∑
x � � � 1 � 1 � N

p � x � � 1 � tanh2 � βJ � x � � β2xµxν �

It is not difficult to integrate this expression and find that

Θ � J � � ∑
x � � 1 � 1 � N

p � x � ln cosh � βJ � x � �
whence we compute

J̃µ
� ∑

x � � 1 � 1 � N
p � x � tanh � βJ � x � βxµ �

In order to find Θ̃ � J̃ � , we would have to solve this equation for J. This is not easy in
general, but we may note that in the case of a single input and no threshold the equations
trivialize: we get

g11
� ∑

x � � � 1 � 1 �
p � x � � 1 � tanh2 � βJx � � β2x2 �



18 DUALITY IN DIFFERENTIAL GEOMETRY

From the antisymmetry of tanh and noting that x2 � 1 this simplifies to

g11
� β2

�
1 � tanh2 � βJ � � �

We then find Θ � J � � lncosh � βJ � and

J̃ � β tanh � βJ � �
Inverting the metric becomes easy too:

g11 � 1

β2
�
1 � tanh2 � βJ � � � 1

β2
� J̃2 �

More interestingly, some headway can be made in the limit N � ∞, if we assume the
inputs to be uniformly distributed, p � x � � 2 � N . We may write:

J̃µ
� β

�
xµ tanh � βJνxν � � � β

�
tanh � βJνxνxµ � � � β � tanh β � Jµ 	 ∑

ν �	 µ
Jνxν ��� �

where we performed a gauge transformation xν � xνxµ in the last step.

In the limit N � ∞ the second term, ∑ν �	 µ Jνxν , approaches a Gaussian distribution with
zero mean and variance:

σ2 � � � ∑
ν �	 µ

Jνxν � 2 � � 2 � N ∑
x � � � 1 � 1 � ∑

ν � ρ �	 µ
JνJρxνxρ

� ∑
ν �	 µ

JνJν � �
J
� 2

� � Jµ � 2 �

where no summation over µ is implied and
�
J
�
is the Euclidean (!) length of J. We may

therefore compute J̃µ by

J̃µ
� β

∞�
� ∞

dz

2π

e � 1
2 z2

tanh β
�

Jµ 	 z � �
J
�
2

� � Jµ � 2 � � (2.8)

Assuming that
�
J
�

is of order 1, and that for each of the components
�
Jµ �

is of order
1 � 
 N, we may expand:

tanh β
�

Jµ 	 z � �
J
�
2

� � Jµ � 2 � � tanh β
�
Jµ 	 z

�
J
� 	 O � N � 1 � �

� tanh � βz
�
J
� ��	 βJµ �

1 � tanh2 � βz
�
J
� � � 	 O � N � 1 � �

Inserting this into (2.8), the first term vanishes and we are left with:

J̃µ
� β2

∞�
� ∞

dz

2π

e � 1
2 z2

Jµ �
1 � tanh2 � βz

�
J
� � � �

While this integral cannot be computed analytically, numerical methods may be em-
ployed, or one could expand in one of the limits β � 0 or — with some more care —
β � ∞. We shall not pursue these possibilities here.
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2.3.2 Dual coordinate systems in dually flat manifolds

The following theorem states that a pair of dual coordinate systems exists in a dually flat man-
ifold:

Theorem: When a manifold M is flat with respect to a dual pair of torsion-free connections
∇ and ∇ � , there is a pair of dual coordinate systems � θµ � and � θ̃µ � , such that � θµ � is
∇-affine, and � θ̃µ � is ∇ � -affine.

Proof: ∇-flatness allows us to introduce a coordinate system � θ µ � in which Γµνρ
� 0. Accord-

ing to (2.3) this means that Γ �µνρ
�

� ∂µgνρ (still in � coordinates). Since we assumed
that ∇ � is torsion free, we have Γ �µνρ

� Γ �νµρ, and therefore ∂µgνρ
� ∂νgµρ. Combining

this with the fact that gµν
� gνµ , we may conclude that (again, at least locally) a potential

function Θ exists such that gµν
� ∂µ∂νΘ. This allows us to introduce a coordinate system

� θ̃µ � dual to � θµ � defined by θ̃ν
� ∂νΘ � � � .

In order to show that � θ̃µ � is a ∇ � -affine coordinate system as claimed, we note that for
any µ:

∂µ
�
êν

� ẽρ � � ∂µδρ
ν

� 0 �
since � θ̃µ � is dual to � θµ � . On the other hand, (2.2) shows that

∂µ
�
êν

� ẽρ � � �
∇êµ êν

� ẽρ � 	�� êν
� ∇ �̂eµ

ẽρ �
� gρλ

�
∇êµ êν

� êλ � 	 gνλ gµσ
�
ẽλ � ∇ �̃eσ ẽρ �

� gρλ Γµνλ 	 gνλ gµσ � Γ � � σρλ �

where � Γ � � σρλ is the connection corresponding to ∇ � 1).

Since both the left-hand side and the first term on the right are zero, we conclude that
� Γ � � σρλ � 0, proving that � θ̃µ � is a ∇ � -affine coordinate system. �

2.4 Divergence

On a manifold with dual connections we define the divergence between two points as

D � P � Q � � Θ � θP �
	 Θ̃ � θ̃Q � � θµ
P θ̃Q � µ � (2.9)

At first sight this definition may seem meaningless, but in fact the divergence has rather nice
properties: it behaves very much like the square of a distance, and it is obviously very easy
to compute: one does not have to evaluate integrals as in the calculation of the Riemannian
distance on a curved manifold.

More specifically, the properties of the divergence can be stated as follows:

1. D � P � Q ��� 0, with equality iff P � Q;2)

1)Note that for � Γ � � µνρ we need not make the distinction between the covariant form in ˜� coordinates and the
contravariant form in

�
coordinates, just as for tensors.

2)Assuming that the metric is positive definite, which the Fisher information certainly is.
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2.
∂

∂θµ
P

D � P � Q � ���� P 	 Q

� ∂
∂θµ

Q

D � P � Q � ����� P 	 Q

� 0;

3.
∂

∂θµ
P

∂
∂θν

P
D � P � Q � ���� P 	 Q

� gµν � P � ; (in fact
∂

∂θµ
P

∂
∂θν

P
D � P � Q � � gµν � P � for any P, Q);

4. Given three points P, Q and R, then

D � P � R ���� D � P � Q �
	 D � Q � R �
if the angle between the tangent vectors at Q of the ∇-geodesic joining P and Q, and the
∇ � -geodesic joining Q and R is greater than, equal to, or less than 90 � . (This angle is
labelled ϕ in the picture below.)

Properties 2 and 3 follow directly from differentiating the

P

Q

R

ϕγ
PQ

γ
QR

Figure 2.1: The extension of
Pythagoras’ law.

definition. Property 1 then follows from these by noting
that D � P � Q � is strictly convex in � Q � � P, since the metric
is strictly positive definite.

Property 4 – which can be viewed as a generalized
Pythagoras law – can be proved as follows: Let γ PQ be the
∇-geodesic joining P and Q, and γQR the ∇ � -geodesic join-
ing Q and R. Being geodesics, these curves can be written
in terms of the affine coordinates θ and θ̃ as follows:

γ PQ : t 	� � P 	 � � Q � � P � t

and
γQR : t 	� ˜� Q 	 � ˜� R �

˜� Q � t �
By definition, we have

D � P � R � � Θ � � P ��	 Θ̃ � ˜� R � � θµ
P θ̃R � µ �

On the other hand,

D � P � Q �
	 D � Q � R � � Θ � � P �
	 Θ̃ � ˜� Q � � θµ
P θ̃Q � µ 	 Θ � � Q �
	 Θ̃ � ˜� R � � θµ

Qθ̃R � µ �
Inserting (2.7) and collecting terms this can be rewritten as:

D � P � Q �
	 D � Q � R � � D � P � R �
	 θµ
Qθ̃Q � µ � θµ

P θ̃Q � µ � θµ
Qθ̃R � µ 	 θµ

P θ̃R � µ
� D � P � R � � � θµ

Q � θµ
P � � θ̃R � µ � θ̃Q � µ �

� D � P � R � �

�
γ̇ PQ

� γ̇QR � �� Q� D � P � R � ��� γ̇ PQ ��� γ̇QR � cos � π � ϕ � �

proving the statement.
There is an intimate relation between the divergence just defined and the Kullback-Leibler

distance D � p � q � � � X dx p � x � log p 
 x �
q 
 x � : locally they are equivalent, and for some special families

of distributions one may show that they are globally equal.
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2.5 Duality of α- and � α-connections

We end this chapter by establishing a link between the dualities found above in differential
geometry and the information geometry introduced in the previous chapter. This link consists
of the following:

Theorem: The α- and � α-connections are dual to one another.

Proof: From (1.17) we find that

Γ

 α �
µνρ 	 Γ


 � α �
µρν

� Γ(metric)
µνρ 	 αTµνρ 	 Γ(metric)

µρν � αTµρν �
Since Tµνρ is fully symmetric in its indices, the two terms that involve α cancel. The
metric connection being self dual by construction, the remaining terms add up to ∂µgνρ
(using (2.3)). We have thus established that

Γ

 α �
µνρ 	 Γ


 � α �
µρν

� ∂µgνρ �
According to (2.3), this means that Γ


 α �
µνρ and Γ


 � α �
µνρ are dual to one another. �

Corollary: α-flatness implies � α-flatness.



CHAPTER 3

OPTIMIZATION

3.1 Minimizing a scalar function: Gradient descent

Minimizing a scalar function is a very common task. For example in neural networks one often
wishes to find the point in weight space where the generalization error is minimal: In a feed
forward network with n inputs x and m outputs f � f � x;J � , (J contains all the connection
weights defining the network), the generalization error is given by

εg � J � � � � T � x � � f � x;J � � 2 � �

where � � � indicates averaging over the noise in f ,
� � � � � indicates averaging over the inputs, and

T � x � is the function that the network is supposed to learn.
In many applications, people use the following gradient descent learning rule (in which η

is called the learning rate):

Jµ � Jµ
� η

∂
∂Jµ εg � J � �

From our study of differential geometry we see immediately that something funny is going on
here: in the first term on the right, µ appears as an upstairs index, while in the second term it
appears downstairs. Thus the subtraction doesn’t yield a proper vector.

The way to fix this problem is obvious: use the inverse metric to raise the index on the
second term. This leads us to the following corrected learning rule

Jµ � Jµ
� ηgµν ∂

∂Jν εg � J � �
Alternatively, this result can be obtained from first principles, by taking a step back, and con-
sidering what we are really trying to achieve by gradient descent: we wish to find a δJ that
maximizes

�

εg � J 	 δJ � � εg � J �
d � J 	 δJ � J � � (3.1)

For infinitesimal δJ appendix A.4 tells us that

d � J 	 δJ � J � � �
gµνδJµ δJν �

Inserting this into (3.1) and extremizing the result with respect to δJ shows that δJµ should be
taken to be a scalar multiple of gµν ∂

∂Jν εg � J � as claimed.
A number of studies [4, 5, 6] indicate that this modified learning rule converges much more

rapidly than the original, and in particular, that many of the plateaus phases encountered in flat
gradient descent are avoided or substantially reduced when one acknowledges that the weight
space is not in fact flat.
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3.2 Minimizing the divergence

Another important optimalization problem is to find a distribution that approximates another,
given distribution as closely as possible under some constraints. An example would be where
we wish to find a weight vector for a stochastical neural network, such that it most closely
approximates a given distribution, which need not be exactly representable by the network.

Mathematically, this translates into the following: given a manifold M and a submanifold
S , and a point P in M , find the point P 
 in S that is nearest to M . Instead of minimizing the
Riemann distance — which would involve integrating the metric along the metric geodesic
between P and P 
 at every iteration step — we aim to minimize the divergence introduced in
chapter 2.

When M is flat under the dual connections Γµνρ and Γ �µνρ, and S is convex1) with respect
to Γ �µνρ, this problem may be solved as follows:

- Introduce affine coordinates � and ˜� on M .

- Introduce any convenient coordinate system � on S .

- The task then reduces to minimizing

D � P � P 
 � � D � � P
� ˜� ��� P � �
� (3.2)

with respect to � . Since (3.2) defines a scalar function on S , this is easy: simply iterate

ϑα � ϑα
� η gαβ

S
∂

∂ϑβ D � � P
� ˜� ��� �
� �

where gαβ
S is the metric on S induced by the metric on M .

When S is not convex, the procedure may still be used, but the minimum reached does not
necessarily correspond to the global minimum.

3.2.1 Between two constrained points

Sometimes we may not wish to approximate a specific distribution in M by a distribution in S ,
but rather to find a distribution in S that is closest to any distribution in M that satisfies some
property. Mathematically this translates to the possibility that there may be a partitioning of
M such that all distributions in one set are in some sense equivalent. This situation typically
occurs in recurrent neural networks with hidden layers: only the states of non-hidden neurons
are relevant from an external point of view.

Suppose then that we wish to find a distribution in S that is closest to any distribution in
another submanifold N of M . In other words, we wish to find the points P � N and P 
 � S
that minimize D � P � P 
 � � D � � ��� P � � ˜� ��� P � �
� .

Introducing coordinates � � � τa � on N , this problem may again be solved by gradient
descent2): just iterate

��� � � � � ��� 
 � � 
 � �
1)A submanifold S is said to be convex with respect to ∇ when the ∇-geodesic between any two points in S lies

entirely within S .
2)The solution presented here is based on [7]
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where

ϑ 
 α � ϑα
� η gαβ

S
∂

∂ϑβ D � � ��� � � ˜� ��� �
� �
and

τ 
 a � τa
� η gab

N
∂

∂τb D � � ��� � � ˜� ��� �
� �

in which gab
N is the metric on N induced by the metric on M .

Again this procedure converges to a unique global minimum if S is convex with respect to
Γ �µνρ and N is convex with respect to Γµνρ, but the procedure may be used even in the general
case if one accepts that it may not find the global minimum.

3.2.2 Application: Recurrent neural networks

As a specific example, consider a stochastic recurrent neural network with symmetric interac-
tion matrix and without self-interactions1) . If the network consists of N cells, we may represent
the states of these cells as an N-dimensional vector � � � � 1 � 1 � N . The sequential evolution
rule picks one of these cells at random at every timestep and updates its state according to

σi � t 	 1 � � sgn
�
tanh � βhi ��� � t �
�
��	 zi � t � � �

where zi � t � is a uniform random variable taking values in � � 1 � 1 � and

hi ��� � � N

∑
j 	 1

wi jσ j 	 θi �

Here wi j is the interaction matrix and θi are the biases.
Iterating this step yields a Markov process, which can be written as

P ��� � t 	 1 � � � � � ∑� � W ��� ; � 
 � P ��� � t � � � 
 � �
where

W ��� ; � 
 � � δ
� � � � 	 1

N

N

∑
i 	 1

�
Wi � Fi � � δ � � Fi

� � � Wi ��� � δ � � � � � �
Here Fi denotes the i-th spin-flip operator: � Fi � � j

� σ j � 2σ jδi j , and

Wi ��� � � 1
2

�

1
2

σi tanh � βhi ��� �
� �
If the weight matrix is symmetric (wi j

� w ji) and self-interactions are absent (wii
� 0), this

process obeys detailed balance and the equilibrium distribution is given by

P ��� � � e � βH 
 � ��� c0 
 w � � � � (3.3)

where

H ��� � �
�

1
2 ∑

i �	 j

σiwi jσ j � ∑
i

θiσi
� (3.4)

1)This example is also treated in [7].
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and c0 is a normalisation constant.
If we assume that the network contains H hidden cells and V � N � H visible cells, the

energy function may be rewritten as

H ��� V ; � H � �
� ∑

i � j

σH
i wH

i j σ
H
j � ∑

i � j

σV
i wV

i jσ
V
j � ∑

i � j
σH

i wHV
i j σV

j
�

in which we have implicitly introduced σH
0

� σV
0

� 1 and replaced θH
i and θV

i by wH
0i and wV

0i
respectively. Note that the number of degrees of freedom in the interaction matrix is 1

2 H � H 	 1 �
in � wH

i j � , 1
2V � V 	 1 � in � wV

i j � and HV in � wHV
i j � . (Recall that wi j

� w ji and wi j
� 0.)

The full space of probability distributions on X � � ��� V � � H � � is a manifold M of di-
mension 2H � V

� 1. Only a small part of these distributions can be represented exactly by
the neural network: the interaction matrix parametrizes a submanifold S of M of dimension
1
2 H � H 	 1 � 	 1

2V � V 	 1 � 	 VH . On the other hand, from an external point of view only the
distribution on the visible cells is important. This distribution is defined by 2V

� 1 parameters.
This partitions M into submanifolds N QV of dimension 2V � 2H

� 1 � each, containing distribu-
tions that cannot be distinguished by looking at the visible cells only: QV labels the probability
distribution QV : � � 1 � 1 � V � � 0 � 1 � on the visible cells to which all distributions in N QV are
equivalent from an external point of view. Our task is to find a neural network that most closely
approximates a given QV . In other words: we seek points P � N QV and P 
 � S that are as
‘close’ to each other as possible. We shall show how this may be achieved by minimizing the
divergence.

Minimization is quite straightforward if we notice that S is an exponential family (see
appendix B) and that N QV are mixture families. The first fact follows from (3.3) with (3.4),
since it is clearly possible to introduce alternative random variables s � s ��� � such that (3.3)
may be rewritten as:

P � s � � e∑wi jsi j � c0 
 w � �
Having thus established that S is 1-flat1), we can immediately conclude that S is 1-convex,
since the parameter space � wi j � stretches out infinitely in every direction.

To see that N QV is a mixture family, consider the following: M clearly is a mixture family,
since it is possible to write any probability distribution p � p ��� � � M as

p ��� � � ∑� � θ
� � δ � � � � �

(where each of the θ
�

’s must be in � 0 � 1 � and ∑
�

θ
� � 1 for p to be a properly normalized

probability distribution. Since N QV is defined from M by linear constraints:

N QV �
�

p � M
����� ∑� H

p ��� V ; � H � � QV ��� V � ��� � V ��� �

it follows that N QV is also a mixture family, and is therefore � 1-flat. Thus N QV is � 1-convex.
Our optimization problem can therefore be solved by introducing � 1-affine coordinates

� θµ � and 	 1-affine coordinates � θ̃µ � on M and minimizing the divergence

D � P � P 
 � � D � � ��� � � ˜� ��� �
�
1)In appendix B it is shown that the exponential family is 1-flat.
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with respect to � and � simultaneously. (As before, � ϑ α � are coordinates on S and � τa � are
coordinates on N .)

The beauty of this technique is that it is not necessary to do the evolution and find the mo-
ments of � H at each timestep, since the divergence is given by D � τ � ϑ � � Θ � θ � τ � 	 Θ̃ � θ̃ � ϑ �
� �

θµ θ̃µ , which is specified in terms of the weights only. This makes the optimization process
much less time consuming.

If minimizing the divergens seems an arbitrary thing to do, it may help to know that in the case
considered in this example, the divergence equals the Kullback-Leibler distance

D � P � Q � � ∑� P ��� � log
P ��� �
Q ��� � � (3.5)

We shall prove that D � pw
� pw � � � D � pw � � pw � . To reduce the notational clutter, we shall relabel

the weights by a single vector w � � wµ � � � wH
i j
� wV

i j
� wHV

i j � .
From the definition of the divergence, we have:

D � pw
� pw � � ∂

∂wµ D � pw
� pw � � ���� w � 	 w

� 0 � and
∂

∂wµ
∂

∂wν D � pw
� pw � � � gµν � w � �

In this equation, � wµ � are supposed to be � 1-affine coordinates.
It is not difficult to see that

D � pw � pw � � ∂
∂wµ D � pw � � pw � ���� w � 	 w

� 0 �

All that remains to be shown then is that ∂
∂wµ

∂
∂wν D � pw � � pw � � gµν � w � for all w and w 
 .

Differentiating (3.5) twice, we find:

∂
∂wµ

∂
∂wν D � pw � � pw � � ∑� pw � ��� � ∂

∂wµ
∂

∂wν pw ��� �

� ∑� pw ��� � ∂
∂wµ

∂
∂wν pw ��� � � ∑�

�
pw � ��� � � pw ��� � � ∂

∂wµ
∂

∂wν pw ��� � � (3.6)

The first term on the right will be recognized as gµν � w � . The second term vanishes, as is shown
by the following argument: we may expand

pw � ��� � � pw ��� � � � w 
 µ � wµ � ∂µ pw 	 1
2
� w 
 µ � wµ � � w 
 ν � wν � ∂µ ∂ν pw 	 � � � �

Since � wµ � as a � 1-affine coordinate system on a mixture family, the probability distributions
can be written in the form

pw
� ∑

µ
wµ fµ ��� � �

Therefore, all higher order terms vanish identically. However, since M is a mixture family, it
is � 1-flat and thus also 	 1-flat. Hence the 1-connection vanishes:

Γ

 1 �
µνρ

� E
� 1
p

∂ρ p∂µ∂ν p � � 0 �
Therefore the entire second term of (3.6) vanishes, and the equality of the divergence and the
Kullback-Leibler distance is proven.



CHAPTER 4

UNIQUENESS OF THE FISHER METRIC

The uniqueness of the Fisher information as a metric on statistical manifolds has recently been
proven by Corcuera and Giummolè [3]. In this chapter we present an outline of their proof in a
form that is intended to be accessible for those who have less intimate knowledge of probability
theory than Corcuera and Giummolè presuppose.

The proof consists of three distinct steps:

1. Classification of metrics on manifolds of probability distributions over a finite number
of ‘atoms’;

2. Generalization to infinite (continuous) sets;

3. Application to parametrized distributions.

The first of these was first performed by Čencov in [8]. The other two steps have been taken by
Corcuera and Giummolè in [3].

4.1 The finite case

We are ultimately looking for metrics on manifolds of parametrized probability distributions
that are invariant under tranformation of the random variables, and covariant under repara-
metrization. Starting out with finite sets only helps if we know what invariances we should
require in the finite case to end up with the invariances we are looking for in the parametrized
case. It turns out that invariance under Markov embeddings is the finite case equivalent of
reparametrization covariance. We shall therefore start by looking at those.

4.1.1 Markov embeddings

Consider a set X (for example an interval in � N ) and a partition A � � A1
� �
�
� � Am � of X . (A

collection of subsets is a partition if (1) � i � j : i �� j � Ai � A j
� /0, and (2) � i Ai

� X .) Further-
more, let B � � B1

� �
�
� � Bn � be a subpartition of A, that is, a partition of X such that each Bi is
contained entirely within one of the A j’s. In other words, there exists a partition I � � I1

� �
�
� � Im �
of � 1 � �
�
� � n � such that

Ai
���

j � Ii

B j �

One picture says more than a hundred mathematical symbols: figure 4.1 should make the setup
clear.
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Let A �� � m� be the collection of non-negative

A

A
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B

B

B
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2 3

4

1

3
1

2

Figure 4.1: A set X with a partition A and
a subpartition B, with dashed lines mark-
ing the boundaries of the elements of the
subpartition.

distributions on A1) and similarly let B �� � n� be
the collection of distribution on B. A Markov em-
bedding is a subpartition B of A together with a
mapping f from A to B , with f � � � given by

fj � � � � m

∑
i 	 1

qi jξi
�

where qi j
� 0 unless j � Ii. (Thus only one term

of the sum is non-zero.) Note that consistency re-
quires that none of the qi j’s be negative, and that
∑ j qi j

� 1 for all i.
Associated with f is a mapping f̄ from B

to A :
f̄i ��� � � ∑

j � Ii

η j �
Note that f̄ � f ��� : A � A , but f � f̄ is not nec-
essarily equal to the identity mapping on B .

4.1.2 Embeddings and vectors

We may consider A as an m-dimensional manifold on which we may introduce vectors. In
particular we may introduce the coordinate basis

�
ı̂ �� i � 1 � �
�
� � m � , where ı̂ is the i-th coordinate

basis vector in � m� . A mapping f : A � B induces a mapping f � : T � A � � T � B � defined by

f � : ı̂ 	� f � � ı̂ � � n

∑
j 	 1

qi j ˜� �

where ˜� is the j-th coordinate basis vector in � n� . (These vector relations are the ones that are
slightly more involved on the set of probability distributions

�
ξ � � m� �� ∑i ξi

� 1 � , since the
linear constraint reduces the dimension of the tangent space too.)

4.1.3 Invariant metrics

A sequence of inner products
� � � � � 
 m � on T � � m� � for m � 2 � 3 � �
�
� is said to be embedding-

invariant if for any Markov embedding f : � m� � � n� (with n � m) the following holds:�
X � Y � 
 m � � � � � �

f � � X � � f � � Y � � 
 n � � f � � �
� �
Čencov proved that the only metrics that satisfy this invariance on the submanifold of proba-
bility distributions,

�
ξ � � m� �� ∑i ξi

� 1 � are given by

g

 m �
i j � � � � c0 � δi j

ξi
	 1

ξm
� � for i � j � 1 � �
�
� � m � 1 �

where c0 is a constant.
1)It turns out that the theory is much easier if we do not restrict ourselves to probability distributions, i.e. if we

do not require that ∑i ξi � 1 for �
	 A . (This idea is taken from [9], in which a variant of Čencovs result is proven
pertaining to such non-negative distributions.)
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4.1.4 Rationale

Why are embedding invariant metrics relevant? The solution lies in the fact that a classification
of metrics leads to a classification of divergences, and for divergences embedding invariance is
a very natural property to require.

A divergence, in this context, is any object D that takes two probability distributions over
the same partition A of X , and associates a real number to the pair. If we consider a divergence
as a measure of the difference between two distributions P and Q, it is natural to require that

D � K � P � � K � Q �
��� D � P� Q �

for any mapping K from one space of probability distributions to another, since such a mapping
cannot add new information, and should therefore not be expected to increase the distance
between distributions. Divergences which satisfy this property are called monotone.

If there is a mapping K̄ such that K̄ � K � P �
� � P for all P, and D is monotone, then

D � K � P � � K � Q �
� � D � P� Q � �

because

D � P� Q � � D � K̄ � K � P �
� � K̄ � K � Q �
�
��� D � K � P � � K � Q �
��� D � P� Q � �

Since Markov embeddings are invertible in this sense, monotone divergences are invariant un-
der Markov embeddings.

One other fact about monotone divergences plays a role in our present quest: since one may
consider a mapping K0 that maps any distribution down to some fixed P0, we have for any P, Q:

D � P0
� P0 � � D � K0 � P � � K0 � Q �
��� D � P� Q � �

In particular, D � P� P � is a minimum of D � P� Q � . We may as well limit ourselves to divergences
for which D � P� P � � 0 and D � P� Q � � 0 unless P � Q, consolidating the interpretation of diver-
gences as a measure of the difference between two probability distributions.

For any partition A of X we can then expand

D

 A � � P� Q � � #A

∑
i � j 	 1

D

 A �
i j � P � �

Q � Ai � � P � Ai � � �
Q � A j � � P � A j � � 	 O � � Q � P � 3 � � (4.1)

where D

 A �
i j � P � is a strictly positive definite symmetric rank 2 tensor field.

Now we see why embedding invariant metrics are interesting: any metric can be used to
play the role of Di j � P � here, but only embedding invariant metrics will yield monotone diver-
gences. Conversely, since any strictly positive definite symmetric rank 2 tensor field can be used
as a metric, Čencovs theorem gives a classification of monotone divergences upto second order.
It can be shown that the only monotone divergences are those for which D


 A �
i j � P � � c0

δi j

P 
 Ai � . (A
proof can be found in [3].)
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4.2 Generalization to continuous sets

In the previous section we found classifications of metrics and of divergences for finite parti-
tions A, and we found that those classifications are tightly related. The next step is to show that
a similar relation can be established when X is partitioned into infinitely many sets. We shall
not go into the details, but merely state the results and the conditions under which they apply.

One may consider probability distributions on X as probability distributions on an infinitely
fine partition of X , which can be viewed as a limit of finer and finer finite partitions. If P is a
probability distribution on X , we denote by PA the restriction of P to A , that is PA � Ai � �
�

Ai
dx P � x � . Let � A 
 n � � be a sequence of partitions of X , with #A 
 n � � n. A divergence D is said

to be regular if
lim
n � ∞

D � PA � n � � QA � n � � � D � P� Q �
for any probability distributions P and Q on X , and irrespective of the sequence � A 
 n � � .

Corcuera and Giummolè show that the only monotone and regular divergences for which
D � P� P � � 0, are given by

D � P� Q � � c0
�
X

dx
� Q � x � � P � x ��� 2

P � x � 	 O � � Q � P � 3 � �
Although the mathematics is more complicated, the end result turns out to be a straightforward
generalization of the finite case.

We shall not try to write down a metric in this case, since that would force us to deal with
the intricacies of infinite dimensional manifolds.

4.3 The parametric case

Instead, we move straight on to our final goal, showing that the Fisher information is unique.
To this end, consider a subspace of parametrized probability distributions on X . If P is in this
subspace, we may write P � p � � x � , where � is supposed to take values in some interval of � N

for some N ��� . Any monotone and regular divergence between P � p � � x � and Q � p � � � x � can
then be written as

D � P� Q � � D � � � � 
 � � A �
X

dx
� p � � � x � � p � � x ��� 2

p � � x � 	 O � � p � � � p � � 3 � � (4.2)

(where we still take D � � � � � to be zero).
In writing (4.2), we have implicitly assumed that monotonicity in the parametric case is

equivalent to invariance under tranformations of x and � : those transformations correspond to
the invertible mappings of � 4.1.4. We shall come back to this crucial point later.

For the moment, we shall proceed assuming that (4.2) is indeed a full classification of
invariant divergences upto the stated order: the final term in (4.2), O � � p � � � p � � 3 � , is supposed
to indicate the fact that we are still making expansions similar to the one in (4.1).

Taking this expansion a bit more seriously, we have

p � � � x � � p � � x � � � θ 
 µ � θµ � ∂µ p � � x ��	 O � � � 
 � � � 2 � �
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Inserting this into (4.2) gives:

D � � � � 
 � � c0
�
X

dx
1

p � � x � ∂µ p � � x � ∂ν p � � x � � θ 
 µ � θµ � � θ 
 ν � θν �
	 O � � � 
 � � � 3 � �
Even now, the fact that any metric could be used as a prefactor for the � θ 
 µ � θµ � � θ 
 ν � θν � term
remains unchanged. We conclude that the only metrics that give rise to regular and monotone
divergences in the parametric case are

gµν � � � � c0
�
X

dx
1

p � � x � ∂µ p � � x � ∂ν p � � x � � (4.3)

since invariance of D is equivalent to covariance of the prefactor for the � θ 
 µ � θµ � � θ 
 ν � θν �
term. The metrics (4.3) are just the scalar multiples of the Fisher information.

Note that the uniqueness of the Fisher information as a covariant metric also proves the op-
timality of using the Fisher information in gradient descent learning: since the optimal learning
rule should certainly by reparametrization invariant, and the only covariant gradient is gµν∂ν,
this gradient cannot but yield the optimal rule, apart from a possible time-dependent scalar
pre-factor.

One final word of warning seems to be in order: strictly speaking, we have only proven that the
Fisher information is the only metric that can be used to build regular divergences. While it is
clear that any parametrized divergence of the form (4.2) can be used to construct a monotone
and regular divergence for the space of all probability distributions, it is not quite as obvious
that all parameter invariant divergence must of necessity be extendable in this way. Only when
this point is cleared up will the classification of monotone and regular divergences constitute a
full mathematical proof of the uniqueness of the Fisher metric.

4.A Appendix: The more formal language of probability theory

Mathematicians have come up with a paradigm to avoid our admittedly vague term ‘probablity
distributions over finite or infinite partitions of a set X ’. In this appendix we shall give a very
brief introduction to this language, to serve as an introduction to the literature.

The following definitions have been taken from [10].

Definition: A collection B of subsets of a set X is called a σ-algebra if it satisfies

1. /0 � B ;

2. If A � B , then also X � A � B ;

3. If A1
� A2

� A3
� �
�
� � B , then � i Ai � B .

A pair � X � B � where B is a σ-algebra over X is called a borel space.

Definition: A map m : B � � 0 � 1 � is called a probability distribution if
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1. It is countably additive, that is

m � �
i

Ai � � ∑
i

m � Ai �

for any (countable) collection � Ai � of pairwise disjoint sets in B , and

2. m � X � � 1.

Definition: Let � X1
� B1 � and � X2

� B2 � be borel spaces, and let f : X1 � X2 be a map. Then f is
called a measurable map if� A � B2 : f � 1 � A � � �

x � X1 �� f � x � � A � � B1 �
A map f : X1 � Y � � is similarly called a measurable map if� y � Y : f � 1 �
� � ∞ � y � � � �

x � X1 �� f � x � � y � � B1 �

Definition: Let � X � B � be a borel space. A map f : X � Y is called a simple function if f takes
only a finite number of values, and for every f � 1 � � y � ��� B for all y � Y .

Definition: Integral
Let s be any non-negative simple function on � X � B � . Then there exists a partition of X
into disjoint sets A1

� �
�
� � Ak all of which belong to B , and k numbers a1
� �
�
� � ak in � 0 � ∞ �

such that s � ∑k
i 	 1 aiχAi , where χA is the indicator function: χA � x � � 1 if x � A and zero

otherwise.

Let P be a probability distribution on X . We then define the integral � X sdP of s with
respect to P by �

X
sdP � ∑

i

aiP � Ai � �

If f is a non-negative borel function from X to � � 1), we define its integral with respect
to P by

�
X

f dP � sup � �
X

sdP
���� s is a simple function on � X � B � , and s � x ��� f � x � for a x � X � �

This leads to a more precise definition of mappings between spaces of probability distribu-
tions2):

Definition: Given two borel spaces � X1
� B1 � and � X2

� B2 � , K : X1 � B2 � � 0 � 1 � is called a
Markov kernel if

1. K ��� � A � : X1 � � 0 � 1 � is a measurable map for any A � B2, and

2. K � x � � � : B2 � � 0 � 1 � is a probability distribution on � X2
� B2 � .

1)A borel function is a basically a measurable map, with the exception that it need not be defined on subsets
A 	 B for which P � A � � 0.

2)based on [3].
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If P is a probability distribution on � X1
� B1 � , then K induces a probability distribution KP

on � X2
� B2 � defined by

KP � A � � �
X1

K � x � A � dP�

where the integration is well-defined since K ��� � A � is a measurable map.

The only further definition that is needed to understand [3] is the following:

Definition: Let � X � B � be a borel space. A finite sub-σ-field is a subset A � B such that

1. A is a σ-algebra over X and

2. A is finite.

4.B A proof of the invariance properties of the Fisher information

For the sake of completeness we shall show that the Fisher metric is indeed invariant under
transformations of the random variable and covariant under reparametrizations. Both proofs
are straightforward.

4.B.1 Invariance under transformations of the random variable

Suppose that our probability distributions are defined in terms of a random variable x taking
values in X � � n. Then

gµν � � � � �
X

dx
1

p � � x � ∂µ p � � x � ∂ν p � � x � �

We can re-express this in terms of another random variable y taking values in Y � � n, if we
suppose that y � f � x � is an invertible mapping. We clearly have:

p̃ � � y � � �
X

dx p � � x � δ � y � f � x �
� � (4.4)

If f is invertible, then we can use the relation

δ � y � f � x �
� � 1��� ∂f
∂x

���
δ � f � 1 � y � � x � �

to find that

p̃ � � y � � �
X

dx p � � x � 1��� ∂f
∂x

���
δ � f � 1 � y � � x � �

��
1��� ∂f
∂x

���
pθ � x ����

x 	 f � 1 
 y �
1) � (4.5)

1)Historically, this expression is in fact older than (4.4). However, at present the properties of the δ -function seem
to be wider known than the properties of distributions in general.
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If we further note that ��� ∂f
∂x

��� does not depend on � , we see that

�
Y

dy
1

p̃ � � y � ∂µ p̃ � � y � ∂ν p̃ � � y � � �
Y

dy

���
1

1��� ∂f
∂x

��� p � x �
���� ∂f
∂x

���� ∂µ p � � x � ���� ∂f
∂x

���� ∂ν p � � x � ����
x 	 f � 1 
 y �

� �
X

dx
1

p � x � ∂µ p � � x � ∂ν p � � x � �

since � Y dy � �
X dx ��� ∂f

∂x
��� .This proves the invariance under transformation of the random variable.

4.B.2 Covariance under reparametrization

Suppose that � θ̃µ � is a new set of coordinates, specified in terms of the old set through the
invertible relationship ˜� � ˜� � � � . Defining p̃ ˜� � x � � p � 
 ˜� � � x � , we are then able to compute

g̃µν � ˜� � ���
X

dx
1

p̃ ˜� � x �
∂

∂θ̃µ p̃θ̃ � x � ∂
∂θ̃ν p̃θ̃ � x � �

in terms of gµν � � � : since
∂

∂θ̃µ p̃ ˜� � ∂θν

∂θ̃µ
∂

∂θν p � 
 ˜� � �
we may directly conclude that

g̃µν � ˜� � � � ∂θρ

∂θ̃µ
∂θλ

∂θ̃ν gρλ � � � � � 	 � 
 ˜� � �
This is precisely the covariance we claimed.



APPENDIX A

RIEMANNIAN GEOMETRY

This appendix introduces the basics of Riemannian geometry for the purpose of the main text.
It is not intended as competition for the excellent textbooks1) that are available on Riemannian
geometry, either in terms of depth or in terms of educational value.

A.1 Manifolds

For the purpose of this text, we shall not need to be completely formal in the definition of a
manifold2). For our purposes, a manifold is a set of points that allows the notion of connecting
any two points by a smooth (continuously differentiable) curve. We shall also require that in
the neighbourhood of any given point it is possible to define coordinates. These coordinate
functions need not be global, and indeed there are many common manifolds that cannot be
covered by any single coordinate patch. In such cases we just require the coordinate functions
to be compatible: if κ1, κ2 and κ3 are three coordinate functions defined in the vicinity of a point
P, we insist that the transition functions φi j

� κi � κ � 1
j are differentiable and satisfy φi j � φ jk

� φik

for any i, j and k.

Example: The unit sphere S2 � �
x � � 3 �� � x � � 1 � is a manifold. It cannot be covered by a

single coordinate function, but we may take κ � : x 	� � x
1 � z

� y
1 � z � , which are valid on the

entire S2 except on the south and north pole respectively. Together they clearly cover the
sphere. It is to show that φ � � � φ � � is the identity on S2 � � � 0 � 0 � 1 � � � 0 � 0 �

� 1 � � .
In the present work we shall not worry too much about such global issues, and we shall assume
that a single coordinate patch covers the entire manifold.

We will therefore use the following – very sloppy – definition of a manifold:

Definition: Manifold
A manifold M is a set of points that allows the notion of smooth curves connecting
any two points, and for which we can define a continuously differentiable injection
κ : M � � n that is invertible on its co-domain.

1)[2] is a good introduction to general relativity. [11] is much more elaborate and mathematically precise. I found
[12] and in particular [13] very useful sources on differential topology. However, they are both in Dutch and may
not be easy to acquire.

2)In fact, giving a mathematically precise definition of ‘manifold’ seems to be quite difficult: one very useful in-
troduction to differential geometry [13] gives a definition that starts with ‘A manifold is a (para-)compact Hausdorff
space satisfying the following properties:’. Even so the author warns that his definition is an ‘intuitive’ one!

35
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A.2 Vectors

In Euclidean geometry one usually thinks of a vector as the straight line connecting two points.
This definition doesn’t make sense on manifolds, since we haven’t yet defined the notion of
straightness: a curve that appears to be straight in � n in one coordinate mapping will generally
not be straight in � n in another.

A.2.1 Tangent vectors

To avoid these complications, we wish to define vectors locally, and independently of coordi-
nates. Instead of thinking of a vector as the line segment connecting two points, we shall use
the following:

Definition: The tangent vector XP in a point P to a curve γ � t � for which γ � 0 � � P is defined as

XP
� dγ

dt
���� t 	 0

�

Given a set of coordinate functions, that is a mapping

κ : P 	� �
θ1 � P � � θ2 � P � � �
�
� � θn � P � � �

we may introduce a basis of coordinate vectors as follows: let γ 
 µ � be the curve through P that
satisfies κ � γ 
 µ � � t �
� � κ � P � 	 tµ̂, where µ̂ is the µ-th unit vector in � n. We then define êµ , for
µ � 1 �
�
� n, by

êµ
� dγ 
 µ �

dt
���� t 	 0

� (A.1)

Note that in the expression êµ , µ does not label the components of a vector ê, rather, for each µ,
êµ is a different vector.

The set of all tangent vectors at a point P is denoted by TP. Any vector X � TP can be
decomposed with respect to the basis (A.1):

X � Xµ êµ
�

where summation over µ is left implicit, in line with the Einstein summation convention which
we shall employ throughout this appendix.

If X is the tangent vector to a curve γ , then X µ � d
dt θµ � γ � t �
� �� t 	 0.

Note that at this stage we have not yet introduced an inner product, so we have no way of
talking about the ‘length’ of a vector. In particular, we should note that it makes no sense to

define � X � � � ∑µ � Xµ � 2, since this would depend critically on the choice of coordinates.

Remark: Mathematicians take it one step further. Given a manifold M , and a curve γ � t � � M
with γ � 0 � � P, they consider the vector XP tangent to γ at t � 0 as the derivative operator
that takes the derivative of functions f : M � � in the direction of γ :

X f � ∇X f � d
dt

f � γ � t �
� ���� t 	 0
�
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Using the shorthand ∂µ f to denote the functions ∂µ f : P 	� ∂
∂θµ � f � κ � 1 � � ��� �� � 	 κ 
 P � , they

write XP f � Xµ∂µ f , or

XP
� Xµ

P ∂µ
1) �

In particular, the basis vectors êµ defined above may be identified with the derivative
operators ∂µ .

These are the first building blocks of the beautiful formalism of differential topology. In
this thesis I shall avoid it as much as possible, in the hope of expanding my potential
audience. This approach clearly has its disadvantages, and in places where the deriva-
tive operator formalism allows shortcuts or useful insights, these will be mentioned in
footnotes.

A.2.2 Vector fields

A vector-valued function defined on a manifold is called a vector field:

Definition: A (contravariant) vector field X over a manifold M is a mapping that assigns a
vector XP to each point P � M . The set of all smooth vector fields over M is denoted by
T � M � .

Definition: Coordinate basis
Given a manifold M and a coordinate function κ : M � � n, the µ-th coordinate basis
vector field êµ is the vector field that assigns the µ-th basis vector êµ �� P to each point
P � M .

A.2.3 Transformation behaviour

Given two sets of coordinates, � θµ � and � θ̃ µ̃ � two bases for TM are induced: � êµ � and � êµ̃ � .
Vector fields may then be decomposed in either of two ways:

X � Xµ êµ or X � X µ̃ êµ̃ �
The components are related by

Xµ � Jµ
µ̃X µ̃ � (A.2)

where Jµ
µ̃
� ∂θµ

∂θ̃ µ̃
2) is the Jacobian of the transformation. Some texts actually take this transfor-

mation behaviour as the defining property of a vector field.

1)This definition of the concept vector may seem to be far removed from the original, yet it is clear that both
definitions contain the same information, and are therefore equally valid.

2)This is most easily seen when identifying êµ � ∂µ , since it is quite obvious that

∂µ � ∂θ̃ µ̃

∂θµ ∂µ̃ �

Requiring that Xµ êµ � X µ̃ êµ̃ then implies (A.2).
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A.3 Tensor fields

Vector fields are not the only objects that have ‘sensible’ transformation behaviour in terms of
the Jacobian. More generally, one may consider rank � n � m � -tensor fields. For the purpose of
this text, these are simply objects T µ1 � � � µm ν1 � � � νn which transform according to

T µ1 � � � µm
ν1 � � � νn

� Jµ1
µ̃1 � � � Jµm

µ̃m Jν1
ν̃1 � � � Jνn

ν̃n T µ̃1 � � � µ̃m
ν̃1 � � � ν̃n

�

where Jµ
µ̃ is the matrix inverse of Jµ

µ̃ . Because of this transformation behaviour, tensors may
be multiplied in arbitrary ways to yield new tensors as long as one sticks to the summation
convention. For example, if A is a � 2 � 0 � -tensor field Aµν and X and Y are vector fields, then
A � X � Y � � AµνXµY ν is a scalar field in its transformation behaviour: the Jacobians cancel one
another.

Remark: More formally, a rank � n � m � -tensor field is a linear mapping that maps m covariant1)

and n contravariant vector fields into real valued functions on M :

T � A 
 1 � � �
�
� � A 
 m � � X 
 1 � � �
�
� X 
 n � � � T µ1 � � � µm
ν1 � � � νn A


 1 �
µ1 � � � A 
 m �µm Xν1
 1 � � � � Xνn
 n � �

The space of � n � m � -tensor fields over M is written as T 
 n �m � � M � .
An � n � m � -tensor field can also be viewed as mapping � 0 � n � -tensor fields into � m � 0 � -
tensor fields, or as mapping m � 1 1-forms and n vector fields into vector fields. To give
a specific example, consider a � 2 � 1 � -tensor field T . If X and Y are vector fields, and A is
a 1-form, then T may be used as any of the following mappings:

T : � A � X � Y � 	� T µ
νρAµXνXρ � �

T : A 	� � T µ
νρAµ � � T
 2 � 0 � � M �

T : � X � Y � 	� T µ
νρXνY ρêµ � T � M � �

If T is symmetric in its covariant indices, one may also define T � A � X � and T � X � without
ambiguity.

A.4 Metrics

A metric is an object gµν that assigns length to vectors and to curves in the following way:
given a vector AP at some point P in a manifold M , the length of this vector is defined as

� AP � �
�

g � A � A � ��� P � �
gµνAµAν ��� P

in any coordinate system.

1)A covariant vector field or 1-form A is a linear map from contravariant vectors fields into functions: A � X � �
AµXµ . 1-forms transform according to Aµ � Jµ

µ̃Aµ̃ . 1-forms may be expanded in terms of basis 1-forms ωµ which
are defined by ωµ � êν � � δ µ

ν in terms of a basis for contravariant vector fields.
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The length s of a curve γ : � 0 � 1 � � M is given by

s � � dt

�
gµν � γ � t �
� dθµ � γ � t �
�

dt
dθν � γ � t �
�

dt � (A.3)

A metric also induces an inner product on T � M ): for any two vectors A and B defined at the
same point P � M , we may define the inner product

�
A � B � as�

A � B � � g � A � B � � gµν AµBν �
A metric must be symmetric and transform as a proper tensor field: given two sets of coordi-
nates � θµ � and � θ̃ µ̃ � we must have

gµ̃ ν̃
� ∂θµ

∂θ̃ µ̃
∂θν

∂θ̃ ν̃ gµν
�

since otherwise the induced inner product would not be coordinate independent or symmetric.
We shall sometimes have use for a contravariant form of the metric, gµν , which is defined

as the matrix inverse of gµν , i.e. gµνgνρ
� δµ

ρ .
Metrics may be used to raise and lower tensor indices, ie given a � n � m � -tensor T µ1 � � � µm ν1 � � � νn

we may define the � n 	 1 � m � 1 � -tensor Tµ
µ2 � � � µm

ν1 � � � νn

� gµµ1 T µ1 � � � µm ν1 � � � νn , and the � n � 1 � m 	 1 � -
tensor T µ1 � � � µmν

ν2 � � � νn
� gνν1T µ1 � � � µm ν1 � � � νn , etcetera.

A.5 Affine and metric connection

One is often interested in the rate of change of various fields as one moves around a manifold.
In the case of a scalar field (a function), this is no problem: one just takes the values at two
nearby points to compute the gradient. However, for vector fields (or tensor fields in general),
this is not so easy, since the tangent spaces at two different points are unequal: whereas for a
real valued function f the difference f � P 
 � � f � P � is again a real number, for a vector field X ,
we cannot meaningfully compute X � P 
 � � X � P � , since the basis vectors at P 
 are not in TP and
vice versa. Is there a way around this? Yes and no.

No, because there is no unique way to solve this problem: given a manifold M there is no
unique way to define the rate of change of vector fields. However, if one is willing to accept
that, the problem may be solved by introducing a linear mapping Φ that takes vectors at P 
 and
maps them into TP, allowing comparison between Φ � X � P 
 �
� and X � P � .

A.5.1 Affine connection and parallel transport

We shall be slightly more precise: consider again the set of curves � γ 
 µ � � passing through P
and satisfying γ̇ 
 µ � � P � � êµ � P � , as in � A.1. Let P 
 
 µ � δt � be points on γ 
 µ � near P, in the sense that
P 
 
 µ � δt � � γ 
 µ � � δt � for infinitesimal δt, and let Φ 
 µ � δt � be linear mappings from TP � � µ � δt � to TP, that
reduce to the identity as δt � 0. Linearity means that Φ 
 µ � δt � are completely defined by their
actions on the coordinate vectors as follows:

Φ 
 µ � δt � : ê

 µ � δt �
ρ 	� Φν
 µ � δt � � ê


 µ � δt �
ρ � êν

�
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where � ê 
 µ � δt �
ρ � and � êν � are the coordinate bases at P 
 
 µ � δt � and P respectively.

If Φ 
 µ � δt � are to reduce to the identity as δt � 0, we can write

Φ 
 µ � δt � � ê 
 µ � δt �
ν � � êν

� δt Γµν
ρ êρ �

for small δt. The constants Γµν
ρ are called the coefficients of the affine connection.

Just as one defines

∂µ f � P � � lim
δt � 0

f � P 
 
 µ � δt � � � f � P �
δt

for scalar functions f , we may now define the covariant derivatives of êν as

∇µ êν
� lim

δt � 0

Φ 
 µ � δt � � ê 
 µ � δt �
ν � � êν

δt
� Γµν

ρ êρ � (A.4)

Note that for any pair � µ � ν � , ∇µ êν is a vector.

A.5.1.1 Formal derivation
In this section we shall derive the action of the covariant derivative on vector fields and general
tensor fields. Those who are not interested in the mathematical details, may wish to skip it.

We define the covariant derivative of a function to be the ordinary derivative:

∇µ f � ∂µ f � (A.5)

and demand that ∇ behaves like a proper derivative operator, that is:

1 � ∇µ � αT � � α∇µ � T � (for any tensor T and constant α),

2 � ∇µ � T 	 S � � ∇µ � T �
	 ∇µ � S � (for any two tensors T and S of the same rank),

3 � ∇µ � T � S � � T � ∇µ � S �
	 ∇µ � T � � S (for any two tensors T and S),

where � may represent either tensor multiplication or some contraction.
These properties and (A.4) allow us to conclude that for general vector fields X :

∇µX � ∇µ � Xνêν � � Xν∇µ � êν �
	 ∇µ � Xν � êν
� XνΓµν

ρêρ 	 ∂µXνêν � (A.6)

They also allow us to conclude that

∇µων �
� Γµρ

νωρ � (A.7)

since ων � êρ � � δν
ρ implies that

0 � ∂µ � δν
ρ � � ων � ∇µ êρ ��	 � ∇µων � � êρ � � ων � Γµρ

λ êλ �
	 � ∇µων � � êρ � � Γµρ
λ δν

λ 	 � ∇µων � � êρ � �

whence
� ∇µ ων � ρ

�
� Γµρ

ν �
as claimed.
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Finally, we may combine (A.4), (A.5) and (A.7) to find that for a general rank � n � m � -
tensor T :

� ∇ρT � ν1 � � � νn
µ1 � � � µm

� ∂ρT ν1 � � � νn
µ1 � � � µm

	 Γρλ
ν1T λν2 � � � νn

µ1 � � � µm
	 � � � 	 Γρλ

νnT ν1 � � � νn � 1λ
µ1 � � � µm

� Γρµ1
λ T ν1 � � � νn

λµ2 � � � µm
� � � � � Γρµm

λ T ν1 � � � νn
µ1 � � � µm � 1λ � (A.8)

Luckily we shall scarcely ever need to take the covariant derivative of anything but functions
and vector fields.

A.5.1.2 Working definitions
For the purposes of the rest of this text the following ‘working definitions’ of the covariant
derivative are sufficient:

Definition: The covariant derivative of a scalar function is defined to be the ordinary deriva-
tive:

∇µ f � ∂µ f �
Definition: The covariant derivative of a vector field is given by

∇µX � �
∂µXρ 	 Γµν

ρXν � êρ �

Definition: Covariant derivative in the direction of a vector
The covariant derivative of a function f in the direction of the vector X is defined by:

∇X f � Xµ∇µ f � Xµ∂µ f �
The covariant derivative of a vector field Y in the direction of a vector X is defined by

∇XY � Xµ∇µY �

As mentioned before, Γµν
ρ are called the components of the affine connection:

Definition: An affine connection is an object Γµν
ρ that induces a covariant derivative as in the

definition above. Requiring that ∇Y X be a vector implies that the affine connection is not
a � 2 � 1 � -tensor field. In fact, if � θµ � and � θ̃ µ̃ � are two sets of coordinates, one may show
that

Γµ̃ ν̃
ρ̃ � ∂θµ

∂θ̃ µ̃
∂θν

∂θ̃ ν̃
∂θ̃ ρ̃

∂θρ Γµν
ρ

�

∂θµ

∂θ̃ µ̃
∂θν

∂θ̃ ν̃
∂2θ̃ ρ̃

∂θµ∂θν � (A.9)

This transformation behaviour can be regarded as the defining property for affine con-
nections1) .

The antisymmetric part of an affine connection is called the torsion tensor:

1)One should perhaps write ‘an affine connection is an object Γ with components Γµν
ρ’, but Γ not being a tensor

we shall always write it in component form.
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Definition: For any affine connection, the torsion tensor is defined as

T ρ
µν

� Γµν
ρ

� Γνµ
ρ �

From (A.9) we see that the torsion tensor does transform as a proper � 2 � 1 � -tensor.

An affine connection may be used to define what we mean by parallel transport:

Definition: Parallel transport
A vector field X is said to be parallelly transported, or parallelly propagated, along a
curve γ with tangent vector field Y if

∇Y X � 0 �

A curve for which the tangent vector is propagated parallel to itself is called an affine geodesic:

Definition: A curve γ with tangent vector field X is called an affine geodesic if there exists a
parametrisation of the curve such that

∇XX � 0

at all points along the curve.

In terms of coordinates, we may write X µ � γ � t �
� � ẋµ � t � , where xµ � t � are the coordinates
of γ � t � , and the geodesic equation becomes

ẍρ 	 Γµν
ρẋµ ẋν � 0 �

A.5.2 Metric connection

A metric induces a special affine connection: the metric connection, or Riemannian connection.
It is derived from the notion of metric geodesic:

Definition: A metric geodesic connecting two points is a1) shortest curve between those points
in the sense of (A.3).

It is possible to show (see eg. [2]) that metric geodesics are also affine geodesics for the fol-
lowing connection:

Γµν
ρ � 1

2
gρλ � ∂µgνλ 	 ∂νgµλ � ∂λ gµν � (A.10)

and vice versa. The connection (A.10) is called the metric connection. It satisfies Γµν
ρ � Γνµ

ρ,
and so the torsion tensor vanishes: the metric connection is torsion free. (Another important
property of the metric connection is that it satisfies ∇ρgµν

� 0.)
On a space with metric connection, a global notion of distance is provided by the Riemann-

ian distance: the length of the metric geodesic between two points.

1)For infinitesimally separated points this geodesic is unique, but more generally there may be more than one
local minimum. As an example, consider walking through a hilly area. When the hills are not very steep, there will
be one shortest path between two points that are nearby. However, in the vicinity of a fairly high hill, there may be
two locally-shortest paths: one around each side of the hill.
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A.6 Curvature

To top of the exposé of Riemannian geometry presented in this appendix, we introduce just one
more important tensor that will be used in the main text: the curvature tensor. We shall start
with an intuitive introduction, followed by a more formal definition.

A.6.1 Intuitive introduction

In general, when one transports a vector parallelly from one point to another point in a curved
space, the result is not path independent. The canonical example is carrying a spear around the
earth: start of from the north pole pointing a spear in the direction of the Greenwich meridian
and walk all the way down to the equator, still pointing the spear horizontally along the merid-
ian. Not changing the direction of the spear, turn around and walk along the equator until you
reach the 90 � meridian. Still not rotating the spear, walk back to the north pole. The spear now
points in the direction of the 90 � meridian, in contrast to the original situation.

How does this happen? The answer must lie in the ob-

δ2

δ2

δ1
δ1

R

P S

Q

Figure A.1: Parallel transport
from a point P to a point Q
along two paths. On a curved
manifold, the result of parallel
transport is path-dependent.

servation that parallel transport according to the metric con-
nection on the earth is not the same as parallel transport in
the three dimensional space in which the earth is embedded.
On a sphere one finds that the angle of deviation is equal to
the covered spherical angle. We shall wish to find a quanti-
tative result for more general manifolds though.

To this end, consider carrying a vector X from a point
P to a nearby point Q along two paths (see figure). Let’s
assign coordinates � � � θµ � to P, � 	�� 1 to R, � 	�� 2 to S
and � 	�� 1 	�� 2 to Q. We shall assume that all components
of both � 1 and � 2 are infinitesimal.

First carry X from P to R:

XR
� XP � Γµν

ρ �� P δµ
1 Xν

P êρ �
(This follows from requiring that the covariant derivative
of X in the direction of � 1 should vanish. Integrating
0 � ∇µX � ∂µX 	 Γµν

ρXνêµ in the direction of � 1, we find that the first term integrates to
XR � XP, while the second term yields Γµν

ρ �� P δµ
1 Xν

P êρ to first order in δ1.)
Expanding

Γµν
ρ �� R � Γµν

ρ �� P 	 δλ
1 ∂λ Γµν

ρ �� P 	 O
� ��� 1 � 2 � �

we next carry X from R to Q:

XQ (via R)
� XR � Γµν

ρ �� R δµ
2 Xν

Rêρ

� �
XP � Γµν

ρ �� P δµ
1 Xν

P êρ � �

�
Γµν

ρ �� P 	 δλ
1 ∂λ Γµν

ρ �� P � δµ
2

�
Xν

P � Γστ
µ �

P δσ
1 X τ

P � êρ

� XP � Γµν
ρ �� P �

δµ
1 	 δµ

2 � Xν
P êρ 	 Γµν

ρ �� P Γστ
ν �

P δµ
2 δσ

1 X τ
P êρ 	

�

�
∂λ Γµν

ρ �� P � δλ
1 δµ

2 Xν
P êρ 	 O

� ��� a � 3 � �
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XQ (via S) may be found from scratch, or more easily by interchanging � 1 and � 2 in the expres-
sion for XQ (via R). What is interesting, of course, is the difference between these two:

XQ (via S) � XQ (via R)
� �

Γµσ
λ �� P Γνρ

σ �� P � Γνσ
λ �� P Γµρ

σ �� P � ∂ν Γµρ
λ �� P 	 ∂µ Γνρ

λ �� P � δµ
1 δν

2 Xρ
P êλ �

The expression between brackets is called the Riemann tensor Rµνρ
λ . It expresses the λ -th

component of the difference between the result of parallelly transporting êρ first in the ν-th
direction and then in the µ-th direction, and the result of doing it in the reverse order.

Note for the attentive reader: in calculating XQ to second order in � 1 and � 2, we should
of course really have taken second order terms into account when calculating XR. However,
careful inspection shows that any ��� 1 � 2 and ��� 2 � 2 terms cancel in the final result.

A.6.2 Formal definition

For any connection Γµν
ρ the curvature tensor, or Riemann tensor is defined by

Rµνρ
λ � ∂µΓνρ

λ
� ∂νΓµρ

λ 	 Γµσ
λ Γνρ

σ
� Γνσ

λ Γµρ
σ � (A.11)

There are several further observations one can make about the Riemann tensor:

� From the definition we see that it is antisymmetric in its first two indices:

Rµνρ
λ �

� Rνµρ
λ � (A.12)

� For a symmetric (or torsion free) connection the last two terms cancel. The Riemann
tensor for a torsion free connection then satisfies

Rµνρ
λ 	 Rνρµ

λ 	 Rρµν
λ � 0 (for torsion free connections).

� For the metric connection we can also establish the following identity:

Rµν ρλ
� Rρλ µν (for the metric connection) �

Combining this with (A.12) we find Rµνρλ
�

� Rµνλρ. Finally the curvature for the metric
connection also satisfies the Bianchi identities:

∇µRσνρ
λ 	 ∇νRσρµ

λ 	 ∇ρRσµν
λ � 0 (for the metric connection) �

(Both of these relations are easy to prove in geodesic coordinates, see � 6.6 of [2].)

A.6.3 Affine flatness

A manifold on which the Riemann tensor vanishes everywhere is called (affine) flat. On an
affine flat manifold, it is possible to introduce a coordinate system in which the connection
vanishes everywhere1) . Such a coordinate system is called an affine coordinate system.

1)A proof of this fact can be found in � 6.7 of [2].
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A.7 Submanifolds

Consider an n-dimensional subspace S of an m-dimensional manifold M with coordinates θ µ ,
µ � 1 �
�
� m. On S we may introduce coordinates ϑ α , α � 1 �
�
� n. We consider S to be embedded
in M : any point in S is also a point in M . The M -coordinates of such a point are a function of
the S -coordinates: θ � θ � ϑ � . When this function is smooth and the coordinate vectors

êα
� ∂θµ

∂ϑα êµ
1) (A.13)

are linearly independent, that is, the Jacobian

Bµ
α

� ∂θµ

∂ϑα

is non-zero definite2), S is called a submanifold of M .
A metric on M naturally induces a metric on S :

gαβ
� �

êα
� êβ � � �

Bµ
α êµ

� Bν
β êν � � Bµ

αBν
β gµν �

We may also study the covariant derivative of vector fields in T � S � :
∇α êβ

� ∇α � Bν
β êν � � � ∂αBν

β � êν 	 Bν
β∇êα êν

� � ∂αBν
β � êν 	 Bν

βBµ
α∇µ êν

��� ∂αBρ
β 	 Bµ

αBν
βΓµν

ρ � êρ (A.14)

When ∇α êβ lies entirely in T � S � for any α and β , S is called a flat submanifold of M . In
general, however, ∇α êβ has components orthogonal to T � S � , and thus cannot be viewed as a
covariant derivative on S . This may be cured by projection: the projection on T � S � of a vector
field in T � M � is given by

X̂ � �
X � êα � gαβ êβ �

By applying this projection to (A.14) we obtain a proper covariant derivative on S :

∇̂α êβ
� � ∂αBρ

β 	 Bµ
αBν

βΓµν
ρ � � êρ

� êγ � gγδ êδ � (A.15)

Noting that, given a metric, the components of an affine connection may be computed from the
covariant derivative of the coordinate vectors:

Γµν
ρ � gρλ �

∇µ êν
� êλ � �

(A.15) yields the following connection on S :

Γαβ
γ � gγδ � ∇̂α êβ

� êδ
� � gγδ �

∇α êβ
� êδ � � gγδ � ∂αBρ

β 	 Bµ
αBν

βΓµν
ρ � Bλ

δ gρλ �
Note that a flat manifold may very well contain non-flat submanifolds, as is exemplified by the
possibility of having a sphere as a submanifold of � 3. Also note that affine flatness of S does
not imply that S is a flat submanifold of M , even if M is itself affine flat3). On the other hand,
a flat submanifold of an affine flat manifold is affine flat.

1)We shall write êα for the basis vectors of T � S � , relying on the choice of indices α � β � � � � to distinguish them
from the basis vectors êµ of T � M � . Note again that (A.13) is obvious if we identify êµ � ∂

∂θµ , and êα � ∂
∂ϑ α .

2)or – equivalently – has full rank.
3)Consider for example a torus (which is flat with respect to the metric connection) as a submanifold of � 3.



APPENDIX B

SOME SPECIAL FAMILIES OF PROBABILITY DISTRIBUTIONS

Two families of probability distributions that appear time and time again are the exponen-
tial family and the mixture family. We shall introduce them briefly and discuss the link with
α-connections.

B.1 Exponential family

An exponential family of probability distributions is a family of distributions that can be written
as

M � � p � ��� p � � x � � e∑µ θµ xµ � c0 
 � � P0 � x � � �

where P0 � x � is some fixed ‘carrier’ measure (which may be discrete or continuous) and c0

ensures that the distribution is normalized.
An important subset of the exponential family is the set of Gaussian distributions: while in

the normal way of writing there is an x2 term in the exponent which seems to disqualify them,
we may write

p 
 µ � σ � � x � � 1

2π σ

exp

�
�

1
2

� x � µ � 2

σ2
� � exp

�
µ
σ2 x �

1
σ2 y �

1
2

µ2

σ2
� 1


2π σ
δ � y � x2 � �

showing that in fact the normal distributions do form an exponential family.
We shall now compute the metric and α-connections for exponential families. We have:	

� log p � θkxk 	 c0 � � �
	 logP � x � �
Therefore:

∂µ

	
� xµ 	 ∂µc0 � � � �

(where, as usual, ∂µ
� ∂

∂θµ ).
We thus have:

gµν
��� dx p∂µ

	
∂ν

	
� � dx p � xµ xν 	 xµ∂νc0 	 ∂µc0xν 	 ∂µc0∂νc0 � � 1)

We see that
xµ p ��� ∂µeθkxk � ec0 P0

1)Here, and in the following, the integration should be replaced by summation if P0 is a discrete distribution.

46
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and
xµ xν p � � ∂µ∂νeθkxk � ec0 P0 �

Noting that � dx p � 1 implies � dx eθkxk P0 � x � � e � c0 
 � � �

we find:

gµν � � � � � dx
�
∂µ∂νeθkxk 	 ∂µeθkxk ∂νc0 	 ∂µc0 ∂νeθkxk 	 ∂µ∂νc0 � ec0 
 � � P0 � x �

� �
∂µ∂νe � c0 	 ∂µe � c0 ∂νc0 	 ∂µc0 ∂νe � c0 	 ∂µc0 ∂νc0 � ec0

�
� ∂µ∂νc0 � � � �

Similarly boring calculations show that

E � ∂µ∂ν

	
∂ρ

	
� � 0 �

while
E � ∂µ

	
∂ν

	
∂ρ

	
� �

� ∂µ∂ν∂ρc0 � � � �
Inserting these two into the definition (1.16), we find

Γ

 α �
µνρ � � � � α � 1

2
∂µ∂ν∂ρc0 � � � �

In particular, we see that the exponential family is 	 1-flat.

B.2 Mixture family

Any family of probability distributions that can be written as

M � �
p � � x � �� p � � x � � θµPµ � x ��	 c0 � � � P0 � x � �

is called a mixture family. In this definition, P0 and each Pµ should be properly normalized
probability distributions, each of the θµ should be in � 0 � 1 � , and c0 is a normalization constant:
c0

� 1 � ∑µ θµ , which should also be in � 0 � 1 � .
We shall again try to compute the metric and α-connections. To this end, note that

∂µ

	
� � � � 1

p � ∂µ p � � 1
p � � Pµ � P0 � �

Therefore:

gµν � � � � � dx
1

p � � x � � Pµ � x � � P0 � x ��� � Pν � x � � P0 � x ��� � 1)

1)Again, integration should be replaced by summation if the Pµ are discrete distributions.
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It does not seem possible to calculate this integral for general � Pµ � . However, in one special
case we may: namely when we limit ourselves to distributions over a countable set of atoms:

p � � x � � N

∑
µ 	 1

θµδx � aµ 	 c0 � � � δx � a0
� (B.1)

where the same conditions on the θµ apply as before. As long as these conditions are met, N
may be infinity.

In this case we find

∂µ

	
� � � � 1

p � ∂µ p � � 1
p �

�
δx � aµ � δx � a0 � �

Therefore:

gµν � � � � ∑
x

1
p � ∂µ p � ∂ν p � � N

∑
ρ 	 0

� δρµ � δρ0 � � δρν � δρ0 �
∑N

λ 	 1 θλ δρλ 	 c0 � � � δρ0
�

The numerator is always zero except when ρ � 0, or when ρ � µ � ν. We thus find:

gµν � � � � δµν

θµ 	 1
1 � ∑λ θλ

� (B.2)

a result first obtained by Čencov in 1972 [8].
Calculating the α-connections one stumbles across similar difficulties as for the metric,

however for one special value of α these difficulties collapse:

Γ

 α �
µνρ

� � dx p � ∂µ∂ν

	
∂ρ

	
	 1 � α

2
∂µ

	
∂ν

	
∂ρ

	
�

� � dx p � � 1
p

∂µ∂ν p �

1
p2 ∂µ p∂ν p � 1

p
∂ρ p 	 1 � α

2
1
p3 ∂µ p∂ν p∂ρ p � �

Noting that ∂µ∂ν p � � x � � ∂
∂θµ � Pν � x � � P0 � x �
� � 0, this reduces to

Γ

 α �
µνρ � � � �

�

1 	 α
2

� dx
1
p2� ∂µ p � ∂ν p � ∂ρ p � �

and in particular Γ

 � 1 �
µνρ � 0. The mixture family is thus found to be � 1-flat.

As an aside we note that the calculation may be performed for general α if we limit our-
selves to distributions over a countable set of atoms again: in the special case of (B.1) we find:

Γ

 α �
µνρ � � � � 1 	 α

2

N

∑
λ 	 0

1

p2� � δλµ � δλ0 � � δλν � δλ0 � � δλρ � δλ0 �

� 1 	 α
2

�
δµνδµρ

�
1

θµ � 2 	 �
1

1 � ∑λ θλ � 2 �
�
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