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A System with Both Passive and Active

Feedback Control
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General Block Diagram




Distinguishing Features of Controlling
Combustors

Internal instabilities
Substantial time lags
Intrinsic nonlinearities
Substantial internal noise

The action of control changes the properties
of the system




General Block Diagram, Classical and
Modern Control
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The First Proposal for Feedback Control of a
Combustor (BOLLAY, 1951; TSIEN, 1952)
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sien’s Analysis
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The First Cambridge Experiments
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Cambridge Apparatus Modeling an
Afterburner
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Cambridge Results
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Feedback Control at Ecole Centrale

POINSOT et al. 1987, 1988, 1989
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A General Scheme for Connecting the Physical
System, Modeling, Dynamics and Control
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Simplified Sketch of the System Analyzed
By FUNG et al. (1991)
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Feedback Control at Technische Universitat
Minchen (HERMANN et al. 1996)

T, Mist of ‘

Combustion ~
chamber \ ° o
°. * fuel drops® .*
MICROPHONE . esry
\
N . Atomizer
PHOTO- nozzle
~ IMULTIPLIER
s g /
e Glass FILTER Pressure
window transducer
Flame holder —~
B PHASE
— Pressure SHIFTER
transducer
Sintered AMPLIFIER (=
bmnze\
plate i |
iEiaaiaaanaan Spspasiaaiss ~— Piezo actuator
) — with injection nozzle
Ailr —»
L Piezo stacks

Fuel FUEL




Application of Results by Hermann et al. to
the Siemens Machines

One of the 24 burners

Combustion chamber
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Doing Away With Active Control of the Siemens
Machines (BERENBRINK and HOFFMAN 2000)
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Georgia Tech Scheme for Active Control
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GE Dry Low Emissions (DLE) Combustor
(LPP, Lean Prevaporized Premixed System)
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Swirlers are integral in several places

e Parametric control of instabilities
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GE DLE ‘Premixer’ with
Extended Lean Blowout (ELBO)
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Pratt & Whitney Talon Il Combustor
(RQL, Rich Quench Lean System)

Hot Stream

to
Turbine

Main Quench
Air Stream

Integral swirlers; swirl introduced with quench stream and cooling air
‘No’ problems with instabilities
Rich Quench Lean (RQL) combustor
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Pratt & Whitney Talon Il Injector
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he Trapped Vortex Combustor

T Trapped Vortex
Pilot Flame

e Concept first discussed at AFRL I1n 1993

e Combustion Is sustained by a vortex trapped
In a cavity near the injection plane
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Motivation for Experiments

e The combustion response function is measured by
artificially applying an oscillating pressure field and
measuring the fluctuating heat release using either
chemiluminescence or species specific PLIF.

External Combustor '
Inputs }@ > Dynamics P>
Combustion Response Function
Combustion H(s) - q'(s)/ a _ S= jo
o, Energy Dynamics p'(s)/ D ,

Addition




PLIF versus Chemiluminescence

What are the advantages of using PLIF versus chemiluminescence for measuring the time varying
behavior of unsteady flames?

PLIF: Chemiluminescence:
» Typical resolution is 60 um  Line of sight measurement.

square in the plane normal to
the imager and 500 um in
depth.

Short integration time for better
temporal resolution (~50 ns).

Can be used for quantifying
unsteady heat release and unsteady
concentrations of specific species
(OH, NO, CH, CH20, etc).

Much higher cost and complexity.
More technically challenging.

Small depth of field and imaging
smearing, giving poor spatial
resolution.

 Longer integration time (~200
Us) possibly of the same order as
unsteady features in the flame.

e Only measures sum of passive
emission from multiple species
(i.e. CO2, CH, C2, OH).

» Low cost and complexity.

Technically robust.
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Experimental Arrangement for PLIF
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Laboratory

‘”
PMT collection
system peering
into test section.

Nd:YAG pump laser and custom built
Combustion test optical parametric oscillator (OPO).
section with acoustic
forcing system.

Experimental bluff-
body stabilized flat-
flame burner
assembly.




Typical Chemiluminescence Results
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Graphs depict behavior at varying equivalence ratios with flame strain rate held

roughly constant.
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Peculiarity of Results

* Why is the peak response of the system between 20 Hz
and 100 Hz? Feed system coupling in the presented
system Is not an issue since the premixed reactants are
Injected into the burner through a sonic valve. The
burner cavity Helmholtz frequency is on the order of
350 Hz.

« What do the notches in the amplitude responses
correspond to?

 Why do the phase plots roll-off as they do? These look
like phase plots for a time delay, yet their rate
corresponds to no time constant in the system.
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Concluding Remarks

 Active control can be an extraordinarily important tool
for investigating the dynamics of combustion systems.
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e But it is not a substitute for understanding why a
combustion system is unstable.
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Concluding Remarks

Active control can be an extraordinarily important tool
for investigating the dynamics of combustion systems.

But it is not a substitute for understanding why a
combustion system is unstable.

Combustion systems are easily made to be unstable
and the effectiveness of active control may be
readily—and therefore misleadingly—demonstrated.

Is it true that If the dynamics of a practical combustion
system are thoroughly understood, then the system
may be designed to operate stably?
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