Chapter 2. Derivation of the Equations of Open Channel Flow
2.1 General Considerations

Of interest is water flowing in a channel with a free surface, which is usually referred to as open
channel flow. The channel could be a man-made canal or a natural stream. It could also be a
segment of a channel network.

In this chapter, none of the water flowing in the channel leaves the channel and no external water
enters the channel. Thus, all of the flow is longitudinal; there is no lateral component. Lateral
flow will be considered in a later chapter, as will network flows.

The open channel flow equations are derived from the fundamental 3-dimensional equations of
fluid mechanics. These differential equations and related concepts are reviewed first below,
followed by a definition of the open channel flow problem.

2.1.1 Fundamental fluid mechanics

Formulations in fluid mechanics are usually based on an Eulerian approach, which uses control
volumes. A control volume is a fixed region in space through which the fluid passes, as shown
in Figure 2.1. Each location x, y, z is associated with an infitesimal control volume that
surrounds it. A function F of x, y, z and t (¢t for time) associates the property F with the fluid
particle that is passing through the infitesimal control volume (located at x, y, z) at the time
instant t. The function F is not attached to fluid particles. This concept applies to the
components of a velocity vector as well: u, v and w in the x, y, and z directions, respectively.
As functions of x, y, z and t, components u, v and w define the velocity of a fluid particle that is
passing through the infitesimal control volume (located at x, y, z) at time instant t; see Figure
2.1.

An assumption made here is that the water is incompressible and of uniform density. In such a
case, the mass of fluid inside an infitesimal control volume does not change with time as the
fluid flows through the control volume. This condition can be expressed in terms of velocity
derivatives as follows:
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This equation is known as the continuity equation. Incompressibility is a good assumption for
water flowing in open channels, but density variations can occur due to non-uniform
temperature, salt concentration, etc. Density variation is not considered here.
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In an Eulerian approach, derivatives of functions such as F with respect to time must distinguish

between the time rate of change of F observed at the infitesimal control volume as the particles

pass through (denoted by Z—f, the Eulerian time derivative), or the time rate of change of F for a

particular particle as it passes through the control volume (denoted by I;—i, the material time

derivative). These two time derivatives are related by
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where the extra terms on the right are the convective part of the material time derivative. Particle
acceleration is expressed in a similar way; for the components in the x, y and z directions:
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The material derivative for the acceleration vector is appropriate for equations of motion since
they require actual accelerations of water particles.

In fluid mechanics, equations of motion are referred to as momentum equations. For the fluid
inside the infitesimal control volume at a particular instant of time, the product of its mass and
acceleration equals the resultant force acting on the fluid inside the control volume, which is a
vector equation. This resultant force is due to the weight of the fluid and to spatial variations in
the internal stresses in the fluid. The x, y and z components of the weight vector per unit

volume can be expressed as — pg Z—Z, -pg Z_fz and - pg Z—z, respectively, where G is the vertical
distance above some horizontal reference plane, p is the fluid density, and g is the gravitational
acceleration (acting vertically downward).. Note that pgG is the gravitational potential energy

per unit volume. Components of the internal stress tensor acting on the sides of the differential
control volume are normal stresses oy, o, and o, and shear stresses ., 7,, and t,,; see Figure

2.2.

The x, y and z components of the differential momentum equations are
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In the order listed, these are equations of motion in the x, y and z directions, respectively, for a
water particle at some instant of time t. Each group of three terms containing derivatives of
and t is the resultant force due to spatial variations in these internal stresses. Equation (2.4) is
written in per-unit-volume form.

(2.4¢)

Constitutive equations for fluids involve the deviatoric stresses, those that exist in addition to the
pressure: the shear stresses t,.,, Ty, and t,,, plus oy, g, and o, where
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Ox = Ox —P; Oy = 0y —D; 0, = 0,—D (2.5)
and where the pressure p is the average of the normal stresses:
_ 0y toy,to,

p="—7F—". (26)

Through a viscosity tensor, these six deviatoric stresses are related to the six strain rates: the
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The constitutive relations will not be given here because they are not needed in the derivation of
the open channel flow equations. Instead, it will just be mentioned that any product involving a
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normal strain rates d % and the shear strain rates ﬁ +
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deviatoric stress component and the corresponding strain rate, such as oy, % or ryz(a—z + 3

represents a rate of energy dissipation.

Stresses acting on a domain of fluid at its boundary are referred to as tractions; the x, y and z
components of the traction vector are denoted by ¢,, t, and t,. Ata point on a boundary, with a
tangent plane whose outward normal direction is denoted by the unit vector 7, the tractions are
related to the internal stresses by the following expressions:

ty = Ny Ox + Ny Tyy + NyTy, (2.7a)
ty = NyTyy + N0, + N7, (2.7b)
t; = NyTxy + Ny Ty, + 1,0, (2.7¢)

where n,, n, and n, are the direction cosines of 7.

Solution of the equations of fluid mechanics involves satisfying boundary conditions. As an
example of a boundary condition, the velocity component normal to an impervious boundary
would be specified to be zero. For a viscous fluid, the tangential component would be zero as
well, which is a no slip condition. Tractions from equation (2.7) can also be specified as
boundary conditions. For example, neglecting the effects of air currents, the tractions acting on a
free surface would be zero. Non-zero values of velocity and traction can also be employed.



Depending on the value Reynolds number, a fluid in motion can develop flow structures at very
small length scales, a phenomenon called turbulence. A simple and approximate way to account
for turbulence, which is sufficient in many applications, is to interpret u, v and w as averages of
the velocity components over time at a time scale just large enough to smooth out the turbulent
fluctuations. The same is done for the elements of the stress tensor and boundary traction vector.
Values used for viscosity are equivalent values that account for overall energy dissipation,
including that due to turbulence.

2.1.2 Open Channel Flow

Whereas control volumes of infitesimal size are useful for developing differential relations, a
finite-sized control volume forms the starting point for deriving the equations of open channel
flow. Such a control volume is depicted in Figure 2.3, and consists of the region of the channel
located between the fixed cross-sections 1 and 2 that is occupied by water. This region, denoted
by 02, is bounded by four surfaces: the free surface A, the floor and sides of the channel 4,,, and
the two cross-sections A;and A,. The free surface boundary can move, so in this sense, the
control volume is not a region fixed in space. The symbols 2, A, A, A; and A, all denote
domains, either volume or surface. An additional domain, that of an interior cross-section, is
denoted by A without a subscript. The intersection of an interior cross-section A and the domain
Ay is the 1-dimensional line domain L,. Because of the movable free surface, the extents of all
these domains are functions of time.

The domain symbols 2, A;, A,, A and L,will serve a dual purpose; the actual meaning should be
clear by the context. 2 will also denote the volume of the control volume, i.e., the volume of
water within the domain 2. A,, A, and A will also denote the areas of the respective cross-
sectional domains. L, will also denote the length of the intersection of A and A, (the wetted
perimeter of a cross-section).

Figure 2.3 also shows the coordinate system employed and other geometrical variables. The

x axis is parallel to the slope of the channel bottom, making an angle 6 with horizontal, and 6 is
taken to be constant. The z axis extends across the channel in the horizontal plane, and y is
perpendicular to x and z so that the three axes form a right-handed system. So, if the channel
slope is not steep, y will be mostly vertically upward. Cross-sections 1 and 2, located at x = x,
and x = x,, are parallel to the y, z plane, as is the interior cross-sectional domain A. Along the
boundaries of (2, the normal direction is denoted by the unit vector 7, positive being outward,
with direction cosines n,, n,, and n,. For a prismatic channel, in which the shape of the cross-

section does not vary as a function of x, n,, = 0 along A4,.

With respect to a horizontal reference plane, the elevation of a point along the x axis is G, and
the elevation of some fixed point x, y, z is G, given by



G = Gy+ycosf . (2.8)

In terms of 6, the derivatives of G in the weight component terms of equation (2.4) are
G

P =-siné; Z—JG, = cos 0; and Z—j = 0.
The equations of open channel flow are based on an assumption of the velocity distribution over
a cross-section being primarily in the x direction. Although the two velocity components v and
w exist, they are assumed to be much smaller than u. This leads to a simplified, 1-dimensional
flow theory in which the velocity parameter appearing in the open channel flow equations is the
average of u over a cross-section, denoted by V and given by

1
V—ZL wdd.  (2.9)

The channel flow rate @, with units of volume of water per unit time, is
Q=VA. (2.10)
Q, V and A are functions of x and t.

As will be shown later, other assumptions lead to the condition that the water pressure p varies
hydrostatically in the y direction and is constant in the cross-channel direction z, the latter
implying that the water surface elevation y, in the z direction is constant. Two of these
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assumptions, that the accelerations D—: and D—V: are small, are consistent with v and w being

small. If v is small (compared to u), then the water surface elevation y, will vary slowly in the x
direction. Such a flow situation is referred to as gradually varying, for which the water pressure
can be taken to be hydrostatic. At the other end of the flow spectrum is rapidly varying flow, in
which steep water surface gradients exist in the x direction. An example of the latter is the flow
in the vicinity of a hydraulic jump (Figure 2.4).

The open channel flow equations can be written either for time varying flow or steady flow.
Time differentiation appears in the former but not the latter. The equations can be written for
cross-sections 1 and 2 a finite distance x,— x; apart (the finite control volume in Figure 2.3),
which will be referred to as the algebraic form. By taking the limit as x,- x; approaches zero,
the algebraic form can be turned into a differential form, which contains x differentiation. Thus,
the open channel flow equations for steady flow and a finite control volume contain no
differentiation, while the differential form written for unsteady flow contains differentiation with
respect to both x and t.

In the following sections, the open channel flow equations based on continuity (Section 2.2),
momentum (Section 2.3) and energy (Section 2.4) are derived. Since the momentum and energy
equations have the same origin, one of them plus the continuity equation provide two
independent equations from which the flow in the channel can be determined at every cross-



section. The flow is characterized by two independent parameters that are functions of x and t,
such as VV and y, for one set or Q and A as another.

Development of the momentum and energy equations requires that various correction
coefficients be introduced so that I/, as defined by equation (2.9), appears explicitly. A
discussion of these coefficients is presented in Section 2.5. The equations also require a
roughness coefficient to control the boundary shear resistance in the momentum equations and
energy dissipation in the energy equations. This roughness coefficient is developed in Section
2.6.

Application of the algebraic form of the open channel flow equations in practice is hampered by
the difficulty of evaluating terms that involve the unknown flow parameters between x; and x,.
These parameters can be interpolated based on their values at x, and x,, but to reduce errors, the
distance x,- x; should be small, which then becomes more or less equivalent to integrating the
differential form numerically. However, the algebraic form can be very important for
accommodating short extents of rapidly varying flow in a channel, but only in the specialized
application of steady flow. In this case, enough of the difficult-to-evaluate terms drop out to
make the application possible. This topic is presented in Section 2.7.

All of the derivations in Sections 2.2, 2.3 and 2.4 take the channel segment within the control
volume 2 to be straight, which means constant slope and no curves in its horizontal alignment.
Applicability of the open channel flow equations to the more general case of a curved channel of
varying slope is discussed in Section 2.8. Finally, a junction is considered in Section 2.9.

2.2 Continuity Equations

Integrating the continuity equation (eq. 2.1), over the finite control volume 2 shown in Figure
2.3 and applying Green’s theorem results in

f(au+av+aw>dn—f dA f dA +f dA+f dA, =0, (211
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in which

Up = NyU + Ny U + n,w (2.12)
has been used for v, and v, over A and A,,. v, is the component of water velocity normal to
a boundary, positive outward.

Terms 1 and 2 on the right side of equation (2.11) are the flow rates through sections 2 and 1,
respectively, denoted by Q, and Q;. Term 3 is the time rate of change of the volume of water

within the control volume, Z—f, since the free surface A; is the only moving boundary of the
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control volume. Term 4 is the flow rate out of the control volume through the floor and sides of
the channel, which is zero since lateral flow is not being considered. Substituting the above as
well as equation (2.1) into equation (2.11) results in

dn

E = Ql - QZ ’ (213)
which is the algebraic form of the continuity equation for unsteady flow. This equation basically
states that the rate of increase (or decrease) of the volume of water within the control volume

equals the flow rate of water into or (or out of) the control volume through sections 1 and 2.

The differential form of the continuity equation is obtained by taking the limit as sections 1 and 2

become closer together. Thus, % in equation (2.13) is replaced by g—fdx and Q,-Q, is

replaced by —g—zdx, where A and Q are functions of x and t. Substitution into equation (2.13)

and division by dx results in
0A  0Q
Frinintr (2.14)
which is the differential form of the continuity equation for unsteady flow.

Equations (2.13) and (2.14) can be specialized for steady flow by dropping the terms with time
derivatives. Thus,

Q1 =0Q2 (2.15)
for the algebraic form and
dQ _ 0 2.16

for the differential form. Both equations indicate that Q is constant along the channel.
2.3 Momentum Equations

The first step in developing the algebraic form of the momentum equation for open channel flow
is to integrate the x-direction momentum equation (eq. 2.4a) over the domain 2 of the control
volume (Figure 2.3). Results of integrating individual terms or groups of terms are as follows:
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f pgsinfd = pgQsinf (2.19)
0
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where the Leibniz integration rule is used in equation (2.17), and Green’s theorem is used in
equations (2.18) and (2.20). Term 4 is zero in the absence of lateral flow. Term 5 is the
component of the water weight that acts along the channel slope 8. In Terms 6, 7 and 8, ¢, is the
x component of the traction vector on the boundaries of 2; the free surface is assumed to be
traction free. The traction t, is related to the internal stresses by equation (2.7a). Since the
normal direction is parallel to x on 4, andA4,, t, = oy on A, (n, = 1) and t, =— gy 0N A4,
(n, =-1). Fora prismatic channel, t,, = n, 7, + n,7,, 0N 4 since n, = 0, which is entirely
a shear traction.

The numbered terms in equations (2.17) and (2.18) can be expressed as:
a [*2
Term 1 = —f Q dx (2.21a)
0t J,

Term 2 = 3,Q,V; (2.21b)
Term 3 = 5,Q,V, (2.21¢c)
Term4 =0 (2.21d)

where

B = L u?dA. (2.22)

V24 ),

The coefficient g is a correction factor so that Terms 2 and 3 can be written in terms of the
section velocity V; see Section 2.5 for a discussion of 8. Terms 6, 7 and 8 on the right side of
equation (2.20) are the x-direction forces acting on the water occupying the control volume that
are exerted by the water outside section 1, by the water outside section 2, and by the floor and
sides of the channel, respectively, and will be denoted by F,, F; and F,.

Substitution of the above into the momentum equation (eq. 2.4a) after integration, noting that the
two unnumbered integrals on the right side of equations (2.17) and (2.18) cancel, results in the
algebraic form of the momentum equation for 1-dimensional open channel flow:

o [ |
p%[ Q dx + pﬁzQsz - pﬁllel = pg.Q sin @ + FZ + F1 + Fb . (223)
X1

This equation equates the time rate of change of the momentum of the water occupying the
control volume at some time t to the resultant force acting on this volume of water at the same
time. All terms represent quantities in the x direction.
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In order to develop expressions for F;, F, and F;,, the other two momentum equations (egs. 2.4b
and 2.4c) will be considered after making some further assumptions. These assumptions are:
neglect particle accelerations in the y and z directions (set the left sides of equations 2.4b and
2.4c to zero); take oy, g, and o, equal to the water pressure p (i.e., oy = g;, = o, = 0); neglect
T,,; and neglect the x variations of 7,,, and z,,. Equation (2.4b) thus simplifies to

o _ 0, (2.24)
dy = —pg coso, .
which corresponds to hydrostatic pressure. Integration gives
p=pg s —y)cost.  (2.25)
using p = 0 at y = y,. Equation (2.4c) simplifies to
dp
P 0; (2.26)
thus, p does not vary with z, implying that the free-surface elevation is constant over the cross-

section, i.e., ys is a function only of x and t.
Using various expressions and definitions above,

F,=—pg| sz —y)cosOdA, = —pgA,(ys; — ¥,)cosb (2.27)

Ay

Fi=pg | (s1—y)cosOdA; =pgA;(ys; —y;)cosb, (2.28)

A

which are simple hydrostatic forces, and where y is y at the centroid of the cross-section. Also,

F, = —pg nx(ys - y) cos 8 dAp + Fspear (2-29)

Ap
which has been decomposed into a part that reacts against the water pressure and a part due to
shear tractions.

Making the substitutions into equation (2.23) results in
d (*2
P&f Q dx + pB,Q,V, — pB1Q1V1
X1
= pg2sinf — pgA;(ys; — y;) cos 6 + pgA;(ys1 — y1) cos 6

—pg j nx(Ys - y) cos 6 dAb + Fshear , (230)
A

b
which is the algebraic form of the momentum equation incorporating the hydrostatic pressure

condition.



As mentioned in Section 2.1.2, use of the algebraic form is hampered by the difficulty of
evaluating terms that involve the unknown flow parameters between x; and x,, which for
equation (2.30) includes the two integral terms as well as pg2 sin 8 and Fg,..,. Application is
usually limited to cases where the two integrals drop out, which requires steady flow in a
prismatic channel. The limitation to a prismatic channel allows the pressure part of F;, to be
dropped (the second to last term on the right side of equation 2.30). The result is

pBQV; — pB1QV;
= pg2sin€ — pgA,;(¥s; — ¥2) cos 6 + pgA;(¥s1 — ¥1) €0s 0 + Fepear,  (2.31)
which applies for steady flow in a prismatic channel without lateral flow.

Equation (2.31) can be written compactly using a quantity defined over a cross-section called
specific force, defined as

F= éﬁQV + A(ys — ¥) cos . (2.32)

After dividing through by pg and making the substitution, equation (2.31) takes the form

o F.
F,—F, =0sin6 +%. (2.33)

For the differential form of the momentum equation, take the limit of equation (2.30) as cross-
sections 1 and 2 become closer together. Thus,
0Q 0
P tPa(BAY)
n

—x(y
Jng +nz *

d
=pgAsin9—pgaf (ys —y)cos8dA — pg —y)cos6dL,
A Lp

+ fshear ’ (2-34)

where finear 1S Fsnear PEr unit length of the channel. Application of the Leibniz integration rule
to the second term on the right side of equation (2.34) results in two terms; one cancels the third
term on the right side above and the other appears as the last term in the result below:

0Q 0 : s
P TPy (BQAV) = pgAsin® + fopear — pgA 5 -cosf.  (2.35)
This is the differential momentum equation for 1-dimensional open channel flow. Hydrostatic
pressure is assumed along the channel. A discussion of the f,.q,- term appears in Section 2.6.

A steady version of equation (2.35) can be obtained by omitting the first term

d(BQV)
p

d
e PgASInO + fonear — pgAicose. (2.36)

dx

An alternate form of equation (2.35) that does not contain Q can be obtained using equations
(2.10) and (2.14) along with some manipulation. The result is
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where
VZ
H5=ﬁ5+yscost9+60. (2.38)

This equation has less physical correspondence than equation (2.36), but it bears some
resemblance to the differential energy equation derived in the next section. For steady state
flow, equation (2.37) reduces to
dH 1 v2dp
B
—_— = - 2.
dx pgAfshear Zg dx ( 39)

2.4 Energy Equations

To develop the algebraic form of the energy equation, multiply the three momentum equations
(egs. 2.4a, b and c) by u, v and w, respectively, and add them together to form a single equation.
With substitution from equation (2.3) and the G terms moved to the left side, the result is

Jdu ou Jdu Jdu v v ov v
( )+ )

up E+ua+v@+w£ E+ua+v@+W£
N (W+ ow 6W+ 6W)+ < aG+ G 66)
WP\ar THax TVay "W az) TPI\"ax T Ve T Va2

The sum of the first three groups of terms on the left side of equation (2.40) can be expressed in
terms of the kinetic energy per unit volume defined as
T = Y%pU?, (2.41)
where U? = u? + v% + w?; and U is the amplitude of the water particle velocity vector. As can
be verified by substitution, this three group sum is the material time derivative of T:
DT _ oT aT aT

oT
E—E+ua+v@+w£. (242)

The last group of terms on the left side of equation (2.40) is the material time derivative of the
gravitational potential energy per unit volume, pgG:
DG aG ( aG aG 6G>

Pg o, =pg 5 +pg (o +vostwo

dx dy 0z (243)

since the Eulerian time derivative pg ‘;—f is zero. The right side of equation (2.40) represents the
rate of work per unit volume done by the internal stresses.
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Equation (2.40) is integrated over the control volume 2. After substituting the material time

derivatives of T and pgG and applying Green’s theorem to the right side, the result is
D(T + pgG) . .
f Tdn = Weyt — D, (2.44)
0
where

Wyt = f (uty + vty + wt,)dAs 2 (2.45)
A

1,2,b
is the rate of work done by the external tractions on the boundaries of the control volume, and
@, =f [a—uax +a—va +a—Wa + <a_u+6_v>T + <a_v+a_W)T
o, Lox oy ¥ 0z * \oy ox) * \oaz oay) ”*
du Jw
(E + %) sz] o (2.46)

is the rate of energy dissipated over the control volume by the internal stresses. The sum
T + pgG on the left side of equation (2.44) is the total energy (kinetic plus gravitational
potential) per unit volume.

Various integrals making up equations (2.44), (2.45) and (2.46) are evaluated as follows:

)
—dn=— f TdO — f v, TdAs  (2.47)

1

f < 6T+ 6T+ 6T)d!2
0 “ox ”ay oy

:f uTdA, —f uTdA, +f VenTdA; +f vpnTdA, (2.48)
A A A A

2 1 s b

2 3 4

J‘ <ac+ aG+ ac>dﬂ
C"ax Ty Tz

=J. uGdA, —f uGdA; +J. vsnGdAs+j VpnGdA (2.49)
A Aq As

2 Ap
5 6 7 8
j (uty + vty + wt,)dA 5 =f ut,dA, +f ut,dA; +f VpntpndAp , (2.50)
A12b Ay A Ap
9 10 11

where the Leibniz integration rule is used in equation (2.47) and Green’s theorem is used in
equations (2.48) and (2.49). Terms 4 and 8 are zero in the absence of lateral flow. In Terms 9
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and 10, vt, + wt, has been omitted since the v and w velocity components are assumed to be
small compared to «, and additionally, t, and t, will be small compared to t,. For Term 11, the

velocity and traction components have been reoriented in the normal and tangential directions,
and the tangential velocity is zero because of the no-slip condition, leaving the v, t;,, term.

Therefore, in the absence of lateral flow, Term 11 is zero.

Evaluations of the numbered terms are as follows:

pa [*2
T 1==-— 'Qvd 2.51
erm ZatLlﬁQ X (2.51a)

Term2 = gazQZVZZ (2.51b)
Term 3 = gallef (2.51¢)
Term4 =0 (2.51d)

Term 5 = pgf u(Gy + ycos0)dA,

Az

Term6 = pgf u(Gy + y cos8)dA,
A
X2

A
Term7 = pg E(GO + y, cos0) dx
X1

Term8 =0 (2.51h)

Term 9 =-pg j u(ys —y)cos6 dA,

A

Term10 = pg | u(ys-y)cosBdA,

A1

Term 11 =0, (2.51Kk)

where

= [ vraa
B =12 M

ulU?dA

“=vea),

(2.52)

(2.53)

(2.51e)

(2.51f)

(2.519)

(2.51i)

(2.51j)

are velocity coefficients so that Terms 1, 2 and 3 can be expressed in terms of the average
section velocity V. See Section 2.5 for a discussion of 8’ and a. Hydrostatic pressure from

equation (2.25) has been used for t,. in Terms 9 and 10.
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Substituting the above into equation (2.44), noting that the two unnumbered integrals on the right
side of equations (2.47) and (2.48) cancel, leads to

*2 0A
f B'QVdx + pgf — (Gy + ys cosB) dx +£a2QzV22 —BalQlVl2
FT ., ot 2 2

1 7 2 3
+pgQ2(Go + y5 cos 8) — pgQ1(Go + yscos ) = —dy.  (2.54)
59 6, 10
Introducing the concept of water head and dividing through by pg, equation (2.54) becomes
,BQde+fxza—A(Go+y cos@)dx + Q,H,, — Q:H,; = —& (2.55)
Zg at - S 2t a2 1Hal pg i
where
V2
H, = a5+GO + ys cos 6. (2.56)

The water head H, is a measure of the sum of kinetic and potential energy in units of length, i.e.,
energy per unit weight per unit volume.

Equation (2.55) is the algebraic form of the energy equation for unsteady open-channel flow. As
mentioned in Section 2.1.2, use of the algebraic form is difficult due to the terms that involve the
unknown flow parameters between x; and x,, which for equation (2.55) includes the two

integral terms as well as —j—‘g’. Application is usually limited to cases where the two integrals

drop out, which requires steady flow. For this case

@,
H(ZZ - H(Zl = _m . (257)

To derive the differential form of the energy equation, the limit of equation (2.55) is taken as x;
and x, become closer together. The result is

0A @,
29 atﬁQV+ (Go+ysc059)+ Q @ = E (2.58)

where @,is the rate of energy dissipation per unit length of the channel. An alternate form that
\does not contain Q on the left side can be obtained using Q = VA and equation (2.14) along
with some manipulation, resulting in

g ov 1% aA vV ap' @,

. _(a- =—— 2.
g ot (@ ﬁ)ZgA Jt Zg at + 6x pgQ (2:59)
A steady state version can be obtained by omitting the first three terms of equation (2.59):
dHy &4
= 2.
P p 290 (2.60)
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The steady state equation (2.60) is sometimes written in terms of a quantity called specific

energy defined as
2

E= a5+ys cosf, (2.61)
which is the total energy per unit weight per unit volume with the potential energy measured
with respect to the x axis. Equation (2.60) becomes
dE b,
= So -
dx pgQ
where S, =—% =sin 6. S, is usually referred to as the slope of the channel, but this is strictly

(2.62)

true for only small 6. S, is positive when the channel elevation drops with increasing x.
2.5 Coefficients g, B’ and a

The coefficient g appears in the momentum equations in the term pBQV (see equation 2.23),
which is the rate of x-direction momentum transfer across a cross-section of the channel. If the
velocity component u were constant over the cross-section at its average value V, this rate of
momentum transfer would be pQV’; thus, B is a correction factor accounting for the variation in u
over the cross-section. As [ is defined by equation (2.22), it will exceed 1 (or equal 1 for
constant u). Since the actual distribution of u will not be known in general, estimates of 8 based
on available information must be used. For uniform, laminar (non-turbulent) flow, a few
analytical solutions for u are possible, and these can be used to calculate g using equation (2.22).
Two of these solutions are shown in Figure 2.5: one for an infinitely wide cross-section of
constant depth and the other for a semicircular cross-section. The resulting values of 8 are 6/5
and 4/3, respectively. However, actual flows will be turbulent, and as such u will be more nearly
constant over the cross-section (dashed lines in Figure 2.5). This means that g will be closer to 1
for turbulent flow than for laminar flow. Realistic ranges for g have been given as 1.03 to 1.07
for man-made cannels and 1.05 to 1.17 for natural streams. In practice, S is often taken as 1, but
a higher value such as the range mid-point would seem to be a better choice.

The coefficient B’ appears in the energy equations for time varying flow (see equation 2.55) and
is defined similarly to 5 except that the total velocity U is used instead of the x-component u;
compare equations (2.22) and (2.52). Under conditions of gradually varying flow, U and u will
be similar, and so will g and 8’. No information exists that allows g’ to be independently
estimated, so in practice it is chosen to be equal to S.

The coefficient a appears in the energy equations in the term gaQV2 (see equation 2.54), which

is the rate of kinetic energy transfer across a cross-section of the channel. Similar to the other
coefficients, a is a correction factor to account for variations in velocity across the cross-section,
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in this case, both u and U. Estimates for @ must be based on available information as well. For
the two uniform, laminar flow solutions shown in Figure 2.5, equation (2.53) gives values for a
of 54/35 (infinitely wide cross-section of constant depth) and 2 (semicircular cross-section),
which exceed the corresponding g values. These a values will be closer to 1 for turbulent flows,
and ranges for a have been given as 1.10 to 1.20 for man-made cannels and 1.15 to 1.50 for
natural streams. In practice, « is often taken as 1, but a higher value such as the range midpoint
would seem to be a better choice.

2.6 Roughness Parameter

The momentum and energy equations require some parameter that represents the roughness of
the floor and sides of actual channels. This is done through the éFshear and (z—z terms in the
algebraic forms of these equations and through the ”%A fshear @nd ;T‘; terms in the differential

forms.

Consider first the differential forms of the momentum and energy equations for the special case
of steady flow. For the energy equation (eq.2.60), the dissipation term 57*; represents the
negative of the slope of a plot of the head H, vs. x. Since H, is associated with energy, the term

% is referred to as the energy slope S,; a positive S,corresponds to a decrease in head H, with

increasing x. The (negative of the = shear 1M IN the momentum equation (eq. 2.39) is also
pPgA

associated with energy dissipation, as can be seen by multiplying top and bottom by V:

‘p%Qfshear -V, s0 that = fypeqr -V is comparable to @,. The product — fipeqr - V is the rate of

work done by the shear (friction) force through the average water velocity. Note that feqr IS
positive in the x direction; it’s true direction is to oppose the flow. Based on the foregoing,

1 . .. .
_p.gTAfShear is referred to as the friction slope S¢. Thus, Sf and S, are defined as

1
Sf - _pgﬁfshear (2-63)
and
®,
Se =——. 2.64
° pgQ (264
Substitution into equations (2.39) and (2.60) leads to
dH, v2dp
Zh_ g TP -
dx 5 29 dx (2:39)
for the momentum equation and
ey _ S (2.60")
dx ¢ '
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for the energy equation. In terms of specific energy, the energy equation is

dE ,
=SS (262)

The last three equations apply for steady flow.

A further restriction from steady flow is uniform flow, also referred to as normal flow, in which
no flow quantity varies in the x direction. This implies that the channel is prismatic. Equations
(2.39) and (2.60'/2.62") reduce to S, = Sy and S, = S,, respectively, so

So=S8=S5, (2.65)
for uniform flow. The relation S, = S is basically a statement that the weight force of the water
in the x direction is balanced by the shearing force along the floor and sides of the channel.

Assuming uniform flow conditions, the shear force f,.q- Can be expressed as

fshear = -¥Y(V,R, $ip Lk, g) ’ (2.66)
where R is a length scale associated with the channel cross-section, ¢ is a dimensionless factor
representing the shape of the cross-section, u is the absolute viscosity of water, k is a length
scale associated with the channel roughness (asperity dimension), and ¥ denotes a general
functional form. In particular, R is the hydraulic radius, defined as A/L,, the cross-sectional
area divided by the wetted perimeter. Dimensional analysis leads to an equation of
dimensionless ratios:

fshear - _ (E f VRP |4
pVZLy R wu ’,/gR
where the second independent variable is Reynolds number R and the third independent variable

is related to the Froude number F. Note that % IS the average shear stress over A,.
b

> . (267)

To estimate the value of R for typical open channel flow, assume V as a few meters per second
and R as a few meters, and take the kinematic viscosity of water as v = % = 1075 m’/sec. This

gives an R on the order of 107. Based on investigations into pressurized pipe flow, such a value
for R should correspond to open channel flow well beyond the transition to turbulence and in a
range where fs,.qr» When normalized as in equation (2.67), is independent of R. These
investigations also suggest that dependence on the shape factor ¢ can be neglected. The effect of
the term related to the Froude number is poorly understood but is not felt to be major, so it is

neglected. This leaves the normalized f;; .., dependent only on the roughness parameter g:

fshear _ (k

=y E) . (268)
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Equation (2.68) is used to eliminate fp.q, from the definition of Sy (equation 2.63); S; is
replaced by S, according to equation (2.65) and the result is expressed in terms of V as
V=C-(RS,)"? (2.69)

where
_ g 1/2
C = (E) (2.70)
is the Chezy roughness coefficient. Investigations into open channel flow on the functional form

of ¥ have found that
—1/6

Coc(%) @)

Substitution into equation (2.69) leads to
Vo km2/6.R2/3.51/2  (2.72)

The roughness length scale k is commonly replaced by two other constants IT and n so that
equation (2.72) takes the form
Il

V=— R/3 .52 (2.13)
where IT = 1 m*®/sec for Sl units and 1.486 fi*"*/sec for English units, and n is the Manning
roughness coefficient (dimensionless). Values for n are obtained from experiments or field
measurements; a list of sample values appears in Table 2.1. The rougher the channel, the higher
the value for n.

From equation (2.73), the velocity of flow in any channel can be found as long as the flow is
uniform. The flow depth must be known, which determines A and L,, which determines R.
Also, given @Q, the normal depth can be found through an iterative process in which Q is replaced
by VA.

For non-uniform flow, including the unsteady case, the friction factor n has to be incorporated
into the momentum and energy equations of sections 2.3 and 2.4. For the differential forms, an

assumption is made that the terms ~ fshear @nd 24 at any cross section of the channel are the
PgA PgQ

same as if the flow there were uniform at the same flow parameters of the cross section.
Therefore, these terms are replaced by — Sy and Sy, respectively, where S¢ is expressed as a
nonlinear function of the flow parameters VV and R using equation (2.73) with S¢ replacing Sy:
2
Sp=V2. % -R™/3, (2.74)
Se could be used instead of S¢, but convention is to use S, so equations (2.60") and (2.62") are
now written as
dH,

dx

=-S, (260"
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and
dE §
E:SO_SII’ (262)

which are steady state forms of the energy equation. Substitutions into the other equations is
straight forward.

The algebraic forms of the momentum and energy equations contain the terms éFshear and Z’—Z,

which can be expressed as

F. 1 (*
L | oreardx (279
X1
and
b, 1 [*2,
E = E CDA dx . (276)
X1

Substituting for the integrands from equations (2.63) and (2.64), using Sy for the latter, gives

F;hear
Py

@, sz
L= | 0s:dx, 2.78
pg ), 7 (2.78)

X2
=— j ASpdx  (2.77)
X1

which can be inserted directly into the algebraic forms of the momentum and energy equations
from Section 2.3 and 2.4. S, is again given by equation (2.74).

2.7 Rapidly Varying Flow

All of the continuity equations derived in Section 2.2 apply both to gradually varying flow and to
rapidly varying flow since the hydrostatic pressure condition was never imposed during the
derivations. However, the differential forms of the momentum and energy equations (equations
2.35/2.37 and 2.58/2.59 and the steady state versions) are only valid in regions where the flow is
gradually varying since the hydrostatic pressure condition was incorporated in their derivations.

Consider possible application of the algebraic form of the general momentum and energy
equations (eqs.2.30 and 2.55, respectively) to rapidly varying flow. These equations contain
many terms that either incorporate the hydrostatic pressure condition or would be impossible to
evaluate for rapidly varying flow. So, consider instead equations (2.33) and (2.57) which are
written for steady flow and, for the momentum equation, a prismatic channel as well. The
hydrostatic pressure condition only has to hold in the vicinity of sections 1 and 2, so the
occurrence of rapidly varying flow between these two cross-sections does not rule out the use of

Fshear

these two special-case equations. The weight term 2 sin 8 and the shear term TR in the
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momentum equation (eq. 2.33) and the dissipation term p‘% in the energy equation (eq. 2.57),

however, depend on what is going on inside the control volume between sections 1 and 2, and so
must be dealt with.

Fshear

Approximations for Y and %’Q that apply for gradually varying flow were developed in

Section 2.6. For the momentum equation, an assumption will be made that the approximation of
equation (2.77) (with S given by equation 2.74) can still be used for rapidly varying flow, which
seems reasonable since rapid variations affect the flow in the interior of the channel more than on
the boundary where Fg;,.,, acts. It may also be true that F;,.,,- does not contribute much to
equation (2.33), such as for a short channel segment; in which case, this term could be omitted.
For the energy equation, the approximation of equation (2.78) (with S given by equation 2.74)
would have to be augmented by an extra term representing the energy dissipation caused by the
rapid variations in the flow. Thus (for steady flow),

@, fxz
—= Sedx + Hp, (2.78)

pgQ ). 7 g
where the dissipation term H; is in terms of head loss. For many situations that produce rapidly
varying flow, such as a rapid change in cross-section of the channel, expressions using
coefficients based on experimental data are available for the extra head loss term.

Substituting equations (2.77) and (2.78'") into equations (2.33) and (2.57), respectively, yields the
forms for the momentum and energy equations that can be applied for rapidly varying flow
within the control volume:

X2
X1
for the momentum equation and

X2
H(XZ - H(Xl = _j Sf dx - HL (257')
X1

for the energy equation. Equations (2.33") and (2.57") assume that hydrostatic pressure
conditions exist at sections 1 and 2, steady flow and, for the momentum equation, a prismatic
channel as well. In practice, each of the two integral terms in equations (2.33") and (2.57") is
approximated by multiplying the average of its values at sections 1 and 2 by the length of the
control volume. This procedure can also be used for the (2 sin 8 term in equation (2.33"), or if
some a priori information is known about the flow profile, it can be used to improve the
approximation. Of course, if 8 = 0, this term drops out.

Often, the momentum and energy equations are applied together to obtain desired information.
For a hydraulic jump in a prismatic channel, the flow parameters at sections upstream and
downstream of the jump are found by employing the momentum equation, then the energy
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equation can be used to determine the rate of energy dissipation in the jump. When the flow
contains an obstruction such as a bridge pier or sluice gate, the energy equation is used to find
the flow parameters upstream and downstream of the obstruction, assuming H, can be estimated
if it is significant. Then the force exerted on the obstruction by the flow can be determined
using the momentum equation. Obviously, for such a situation, the channel is not prismatic, so
F,, from equation (2.23) must be reintroduced in the form

Fy = —=Fop + Fspear » (2-79)

where F,;, is the force that the water exerts on the obstruction. (- F,, is the force that the
obstruction exerts on the water.) Carrying through with the analysis modifies equation (2.33") to

X2
F,—F, =0sin6 —F,, — f ASgdx.  (2.80)
X1

This equation applies for steady flow in a channel with an obstruction, and F,,; can be computed
once the flow parameters at sections 1 and 2 are determined from the energy equation. The
water pressure on the obstruction does not have to be hydrostatic.

2.8 Slope Variation and Curves in Horizontal Alignment

The previous development of the open channel flow equations considered a straight channel, i.e.,
no changes in slope and no curves in horizontal alignment. However, in practice these same
equations are often used for non-straight channels. The x, y and z axes still form a right-angled
coordinate system, with the z axis horizontal, but the x axis is allowed to follow a path along the
channel that curves in both the horizontal and vertical planes. This topic is the subject of the
present discussion.

The first point to be made is that the concept of a straight channel may not always be clear.
Consider horizontal alignment. Figure 2.6a shows a channel with an unsymmetrical transition
from narrow to wide. Two choices for the x axis are shown: one stays straight and one follows
the channel center line. While either could be used, the non-straight alignment has the advantage
of the x axis remaining more parallel with the average direction of the water velocity in the
channel. In the straight arrangement, the “curving” of the channel is accounted entirely by the
cross-sectional shape’s dependence on x. In Figure 2.6b, the channel is clearly curved and a
straight x axis is not an option.

The concept of a straight channel may also not always be clear with regard to channel slope.
Figure 2.7a shows a case where the floor of the channel is uneven, but there is an average slope
along which the x axis is directed. In Figure 2.7b, the slope appears to be constant in elevation
view, but it actually varies with z as shown in the two cross-sections. But again, the x axis is
directed along the average slope. In both of these cases, the channel can be considered “straight”
regarding its slope, and the variations in slope are accounted for by the channel cross-sectional
shape being a function of x. In Figure 2.7c, there is clearly a transition from one slope to
another, and the x axis is redirected in the transition region.
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Deviation from straightness in a channel can cause a number of effects that violate assumptions
made in the derivation of the open channel equations. Water flowing around a horizontal curve
experiences z-component accelerations that can alter the hydrostatic pressure distribution,
causing the water surface to vary in the z direction (y, no longer a function of just x and t).
Circulatory currents in the cross-sectional plane can be present, as well as cross waves when the
flow is supercritical. Variation of the slope angle 6 along the channel produces a y component
of acceleration, directly changing the hydrostatic pressure distribution. These effects, which
represent errors in the standard solution, are a function of the radii of curvature in the horizontal
and vertical planes, the amount of direction change of the channel, and the water velocity.
While these effects can be significant in some cases, in many other cases the curves are gentle
enough or the water velocity slow enough so that the errors can be ignored.

For a curved channel, the solution will depend somewhat on where the x axis is located within
the cross-section because different paths trace out different lengths. The associated error is a
function of the radii of curvature in the horizontal and vertical planes and the amount of direction
change of the channel. Placing the x axis at the centroid of the water cross-section is the best
location to minimize this error, but this is not practical since the y coordinate of the centroid
varies with the water depth. The usual practice is to place the x axis on the center plane of the
channel at the channel bottom. This is an acceptable choice since it will minimize the part of the
error due to curves in the horizontal plane, which is usually the major part.

One potential problem with a curved channel pertains only to the momentum equations. Because
these equations are vector equations, their terms must have a consistent direction. However,
another form of the momentum equation can be written using angular momentum in which the
terms are multiplied by a radial distance, which varies over the cross-section. A rigorous
derivation will not be presented here, but an approximation is to multiply the momentum
equations by an average radius of curvature, converting the terms to angular form. The radius
cancels out, leaving the original equations. Thus, application of the momentum equations to
channels with curvature in either the horizontal or vertical plane is not a violation of the
momentum principal.

A few of the open channel flow equations do not contain any of the assumptions associated with
straightness, and so are equally valid for curved or straight channels. These include three of the
continuity equations (egs. 2.13, 2.15 and 2.16) and the general energy equation (eq.2.44 along
with the definitions in eqs. 2.45 and 2.46).

This discussion should help explain why the equations in this chapter are often used for curved
channels. However, it should always be remembered that approximations are involved, and that
sometimes additional techniques will be required.
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2.9 Channel Junctions

Junctions in a channel can be of the merging flow type or of the separating flow type, as shown
in Figure 2.8. Some equations can be written for flow through a junction by applying the
techniques from Section 2.2, 2.3 and 2.4, resulting in continuity, momentum and energy
equations, respectively. For the momentum equation, the presence of the F;, term and the
existence of three distinct channel directions mean that this equation is not useful in most
situations. Therefore, the presentation here focuses on the continuity and energy equations. The
flow is restricted to steady conditions.

As shown in Figure 2.8, the domain 2 includes the water volume between the cross-sections A,
A, and A;. The boundary A, includes all other boundaries of the water volume, except the free
surface. Thus, the procedures are similar to those of the earlier sections, but with the added
cross-sectional domain As.

The result for the continuity equation is just the addition of the flow term Q5 to equation (2.15)
as follows:

Q1 £0Q03 =0, (2.81)
where the sign in front of Qs is positive for merging flow (part a of Figure 2.8) and negative for
separating flow (part b). Equation (2.81) is a statement that the rate of water flowing into the
junction equals the rate of water flowing out.

For the energy equation, the result is a similarly obvious change to equation (2.57):
@
Q1Hgy £ Q3Hps = Q2Hg, + é ) (2.82)

where the sign choice in front of the Q;H,5 term is the same as that mentioned above. Equation
(2.82) says that the rate that energy flows into the junction equals the rate at which energy flows
out plus the rate that energy is dissipated in the junction. The H, terms are still given by
equation (2.56). The energy dissipation term is the sum of contributions from rapidly varying
flow and channel friction in the junction, denoted by J.

In practice, a junction is often short enough so that G, and cos 6 at sections 1, 2 and 3 can be
taken to be equal and the energy dissipated by channel friction can be neglected. If, in addition,

2
the water heads a;/—g at sections 1, 2 and 3 are small compared to the water depth y., which is

often the case, then the only terms remaining in equation (2.82) are the flow rates Q and water
depths y; at the three sections and the energy dissipated in the junction by rapidly varying flow.
Merging channels dissipate more energy in this way than separating ones, but if this contribution
to the equation can also be neglected, then equation (2.82) reduces to the continuity equation
when the water depth y, is the same at all three sections, and so it is satisfied for this condition.
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If equal water depths are appropriate for steady flow, it may be possible to make this assumption
for unsteady flow as well. Use of equal water depths, when appropriate, greatly simplifies an
analysis.
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