Gene Construction (via Restriction Cloning):

- **Step 1:** Design and order oligos (25nmol scale, desalted)
- **Step 2:** Resuspend each lyophilized oligo to 1 μg/μL with sterile water
- **Step 3:** Make 40 μL of a 10 μM stock of each oligo
- **Step 4:** Make the PCR reaction mix:

5 μ L plasmid template (10 ng/uL; ~50 ng)

 $1 \mu L$ fwd primer ($10 \mu M$)

1 μL reverse primer (10 μM)

18 μL water

25 μL Q5 Polymerase 2X MM (NEB; or other MM)

If using a standard polymerase, make sure to add 10X buffer and dNTPs.

Step 5: Run PCR reaction (72°C extension temperature for Q5)

95°C	2 min		
95°C	30 sec	`	
55°C	30 sec	}	10 avalag
72°C	30 sec	J	10 cycles
95°C	30 sec	`	
60°C	30 sec	}	20 avalag
72°C	30 sec	J	20 cycles
72°C	10 min		
hold at 4°C			

Step 6: Run the PCR Cleanup Kit (Qiagen) on the PCR product

• Elute the DNA from the column with 50 µL of water

Step 7: Set up the restriction digestion of the PCR product and the vector

- Consult the NEB (New England Biolabs) catalog or website for the appropriate reaction conditions (buffer and BSA)
- Set up 20uL reactions (each enzyme individually—controls, vector dd and PCR dd)
 - o Pipette each reaction gently to resuspend the enzyme and mix completely
- Incubate at 37°C for 2 hours

Enzyme 1 only	Enzyme 2 only	Vector dd
2 μL 10X Buffer	2 μL 10X Buffer	2 μL 10X Buffer
X μL vector plasmid (~1000 ng)	X μL vector plasmid (~1000 ng)	X μL vector plasmid (~2000 ng)
X μL water (20uL total rxn)	X μL water (20uL total rxn)	X μL water (20uL total rxn)
1 μL enzyme 1	1 μL enzyme 2	1 μL enzyme 1
		1 μL enzyme 2

PCR Product dd

2 μL 10X Buffer 14 μL Amp PCR product 1 μL enzyme 1 1 μL enzyme 2

Optional Step 7b: Dephosphorylate vector

- Calf Intestinal Alkaline Phosphatase (CIP) is active in CutSmart Buffer
- Add 1uL CIP to your VECTOR dd reactions -- do not add to your insert dd tubes; mix by pipetting
- Incubate at 37°C for 30-60 minutes

Step 8: Gel purify double-digested (dd) vector and insert

- Pour a 1% Agarose gel (1X TAE) 50mL for small gel; 120 mL for large gel
- Add 10X DNA Loading buffer to each of the samples
 - o Dark blue (bromophenol blue) runs at \sim 500 bp \rightarrow use this for large DNAs (vector, etc)
 - Light blue (xylene cyanol) runs at \sim 3000 bp \rightarrow use this for small DNAs (PCR products, etc)
- Load the gel
 - 1 μL NEB 2-log ladder + 8 μL water + 1 μL BPB dye (dark blue) → Load all 10 μL
 - ~1000 ng uncut vector
 - o Load ALL of each digestion reaction
 - Load uncut PCR product if desired
- Run for 45-70 min at 100 V (for TAE buffer) until the bromophenol blue runs \sim 3/4 of the way down the gel
- Extract dd vector and insert from the gel and run the Qiagen Gel Extraction kit on each band (elute from column in water)

Step 9: Ligate the dd PCR product to the dd vector

- Determine the concentration of double-digested vector and insert from the gel purification by nanodrop
 - Use single digestion controls to determine the % of cleavage
- Determine the amount of insert that is needed for a 1:3 molar ratio (vector: insert)
 - This equation will tell you how much insert to use for a 1:1 molar ratio, multiply by 3 to get the amount for the 1:3 ligation

$$\frac{Xbpvector}{Xbpinsert} = \frac{50ngvector}{Xnginsert}$$

Control Ligation

1:3 Ligation

 $\begin{array}{ll} 1~\mu L~10X~T4~Ligase~Buffer \\ X~\mu L~dd~vector~(\sim 50~ng) \\ X~\mu L~water \\ 1~\mu L~T4~DNA~Ligase \\ & X~\mu L~dd~vector~(\sim 50~ng) \\ X~\mu L~dd~insert~(\sim 1:3~molar~ratio) \\ X~\mu L~dd~insert$

- Pipette the reactions gently to mix
- Incubate ligation reactions at room temperature for 1-2 hours

Step 10: Transform ligation reactions into Z-comp cells

- Thaw appropriate molecular biology Z-comp cells (XL1-blue, TOP10, etc) on ice (1 tube contains 100 µL of cells—enough for 2 transformations)
- Add 2 μ L of each ligation into 50 μ L of cells, stir with pipette tip (do not pipette up and down or vortex), let sit on ice for 2-3 minutes
- Plate entire transformation onto a warmed agar plate
- Incubate overnight at 37°C

Step 11: Count colonies on plates, record number of colonies on vector-insert ligation plates vs. control ligation plates

Analyze your results if possible before sequencing: Colony PCR or Restriction Analysis **1. Colony PCR:**

- Day 1: Determine how many colonies to do PCR on (If there are many more colonies on the ligation than the control ligation, 6-10 colonies is sufficient) determine based on how many lanes you can run in a gel
- Circle and number the colonies on the plate
- Control(s):
 - o Colony from control ligation plate
 - o Plasmid that was used for vector (~5-10 ng of purified plasmid/rxn)
 - o Positive control plasmid if available
- Prepare Master Mix of reaction (30 μL/reaction I usually make one more volume than necessary):

Colony PCR

3 μL 10X Thermopol Buffer 0.3 μL 10mM dNTPs 1 μL fwd primer (10 μM) 1 μL rev primer (10 μM) 24.4 μL water 0.3 μL Taq polymerase

- Distribute 30 µL of reaction mixture into each PCR tube
- With a sterile toothpick carefully pick a colony and place the toothpick in the PCR tube
- Add plasmid DNA to any controls where it is needed
- Run PCR reaction

```
95°C 2 min
95°C 30 sec
50°C 30 sec
68°C 1 min/kb
68°C 5 min
hold at 4°C
```

- Add gel running buffer (3 μ L/samples) and run the completed reactions on a 1% Agarose gel (load all 30 μ L)
- Pick the remaining colony into 3mL LB + Amp and grow overnight for minipreps
- Day 2: Miniprep and send for sequencing

2. Restriction Analysis:

- **Day 1:** Determine how many colonies to do restriction analysis on (If there are many more colonies on the ligation than the control ligation, 6-10 colonies is sufficient) determine based on how many lanes you can run in a gel
- Pick colonies into 3mL LB + Amp and grow overnight for minipreps
- **Day 2:** Miniprep cultures
- Set up restriction analysis (10uL reactions)
 - Choose an enzyme or a pair of enzymes that give you a different product for your desired construct compared to the template you started with.
 - o Examples:
 - Use an enzyme that cuts once in your template but twice in your desired construct; look for a small digested fragment
 - Use the same set of enzymes you used to do your cloning if you are inserting a different sized fragment than you started with (linker cloning)
 - o Make sure to run appropriate controls:
 - Single cut on template construct
 - DD on template construct
 - DD on colony from control ligation plate
 - o Make a master mix of the dd and add to 1-2 uL of miniprep DNA (make 1 more MM volume than you expect to use)

dd MM

 $1~\mu L~10X~Buffer$ $6~\mu L~water$ $0.5~\mu L~enzyme~1$ 0.5~uL~enzyme~2

- Incubate restriction digestions for 30-60 minutes
- Run a 1% agarose gel
 - o Make sure to run uncut template vector, single cut controls, and control colony controls.
- Select positive constructs and send to sequencing