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Abstract Intracellular molecular transport and localization
are crucial for cells (plant cells as much as mammalian cells)
to proliferate and to adapt to diverse environmental condi-
tions. Here, some aspects of the microscopy-based method of
fluorescence recovery after photobleaching (FRAP) are intro-
duced. In the course of the last years, this has become a very
powerful tool to study dynamic processes in living cells and
tissue, and it is expected to experience further increasing
demand because quantitative information on biological sys-
tems becomes more and more important. This review intro-
duces the FRAP methodology, including some theoretical
background, describes challenges and pitfalls, and presents
some recent advanced applications.
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Abbreviations
CLSM Confocal laser scanning microscopy
CP Continuous fluorescence photobleaching
ER Endoplasmatic reticulum
FCS Fluorescence correlation spectroscopy
FM Fluorescence microphotolysis
FPR Fluorescence photobleaching recovery
FRAP Fluorescence recovery/redistribution after

photobleaching
GFP Green fluorescent protein
GR Glucocorticoid receptor

HP1 Heterochromatin protein 1
mRNP mRNA–protein complex
MSD Mean squared displacement
NA Numerical aperture
PSF Point-spread function
RICS Raster image correlation spectroscopy
ROI Region of interest
SD Spinning disk
TIRF Total internal reflection fluorescence
YFP Yellow fluorescent protein
3PEA Pixel-wise photobleaching profile evolution

analysis

Introduction

Fluorescence recovery after photobleaching (FRAP; Axelrod
et al. 1976; Koppel et al. 1976; Peters et al. 1974) was first
introduced in the 1970s and is, today, probably the most
widely used method to study transport and diffusion as well
as interactions of biological molecules in living specimens.
FRAP is also referred to as fluorescence redistribution after
photobleaching, fluorescence photobleaching recovery (FPR),
or fluorescence microphotolysis (FM) and represents a whole
family of related methods all based on photoinduced
bleaching (or activation) of marker molecules in selected areas
of a cell. This imposes an unbalanced distribution on a large
number of fluorescent molecules and allows observation of
the relaxation back to equilibrium.

Originally, FRAP experiments could only be performed on
custom-designed microscope systems and relied on the some-
times difficult introduction of chemically fluorescently la-
belled biomolecules into cells. FRAP became more and more
popular in the second half of the 1990s because firstly,
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commercially available confocal laser scanning microscopes
(CLSMs) became very powerful with respect to resolution,
speed, sensitivity, and flexibility, eventually enabling
photobleaching experiments (Pawley 2006). Secondly, the
emergence of the green fluorescent protein (GFP) and an
ever-increasing number of other autofluorescent proteins
(Miyawaki 2011) often derived from GFP has revolutionized
fluorescent labelling of proteins in vivo.

In the following, I will give an overview of the concept and
implementation of FRAP experiments, including the photo-
and biophysical principles and the challenges of data analysis
and how FRAP relates to other similar and complementary
methods.

The typical FRAP experiment

In a typical FRAP experiment (Fig. 1a), the steady-state signal
from fluorescent molecules in a region of interest (ROI), e.g.,
of a cell is recorded using low illumination conditions. Sub-
sequently, the fluorescent molecules in the ROI are depleted
rapidly by irreversible photo-induced bleaching with high-
intensity laser light. Due to diffusion and other transport
mechanisms, the bleached molecules exchange with
fluorescent ones into the ROI. The replacement of
bleached molecules with fluorescent ones at immobile
binding sites results in an unbalanced distribution of
fluorescent molecules, which gradually relaxes back to
equilibrium. The redistribution is subsequently recorded
with highly attenuated laser light, revealing a recovery of the
fluorescence signal in the ROI (Fig. 1b) and yielding param-
eters such as the diffusion coefficient, the fraction of fully free,
transiently bound fraction and fully immobilized molecules,
or the residence time at the binding site responsible for
immobilization.

Data analysis

To characterize the underlying diffusion and binding process-
es, a quantitative analysis is required. Typically, the averaged
fluorescence intensities in the bleach ROI and other regions
are plotted versus time, allowing extraction of the half time of
recovery and an immobile, a slowly mobile/transiently bound,
and a fully mobile/non-bleached fraction, as defined in
Fig. 1b. However, averaging fluorescence intensities comes
along with losing spatial information. Beyond the basic pa-
rametrization, spatially resolved analysis of the fluorescence
intensity over time (Fig. 1c) can be performed with sets of
partial differential equations, which describe coupled reaction-
diffusion models and which are solved analytically or numer-
ically. Like this, a more detailed biophysical interpretation is
achieved. Depending on diffusion coefficients and reaction
rates, most of the FRAP curves can be categorized as pure
diffusion, effective diffusion, separated reaction and diffusion

kinetics, or the case requiring full coupled reaction–diffusion
modelling (Beaudouin et al. 2006; Carrero et al. 2003;
Phair et al. 2004; Sprague et al. 2004). It is fundamen-
tally challenging to dissect clearly the contributions of
diffusion and binding, and the results depend intricately
on experimental conditions, which may lead to misin-
terpretation and inconsistent data (Braga et al. 2004;
Kang et al. 2009; McNally and Sullivan 2008; Mueller et al.
2008; Wachsmuth et al. 2008; Weiss 2004). Other sources of
errors are neglecting diffusion during the bleach segment,
undersampling data due to insufficient time resolution, or
falsely estimating the three-dimensional shape of the bleach
ROI.

Experimental setups for FRAP

Today, mostly confocal laser scanning microscopes are used
in which a diffraction-limited laser beam is scanned across the
sample and toggled appropriately between high and low in-
tensities (Lippincott-Schwartz et al. 2001; Rabut and
Ellenberg 2005; Sprague and McNally 2005; van Royen
et al. 2009; Wedekind et al. 1994), termed imaging FRAP
(Fig. 1d; Braeckmans et al. 2007; Calapez et al. 2002; Carrero
et al. 2003; Kang and Kenworthy 2008; Müller et al. 2009;
Phair and Misteli 2000). Initially, FRAP experiments were
performed with a stationary bleach beam merged with a point
or imaging fluorescence detector (Kao and Verkman 1996;
Koppel et al. 1976; Lopez et al. 1988; Verkman 2003), re-
ferred to as point FRAP (Axelrod et al. 1976; Im et al. 2013;
Simon et al. 1988; Soumpasis 1983; Swaminathan et al.
1997). Nowadays, many commercial and academic
implementations combine a (scanned) bleach beam with other
imaging modalities such as confocal SD or TIRF microscopy
(Schneider et al. 2013; Skruzny et al. 2012).

Combining FRAP with fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS; Elson and
Magde 1974; Magde et al. 1972, 1974) was also introduced
in the 1970s. FCS is a relaxation technique, too. In contrast to
FRAP, the focus of a confocal setup like a CLSM is
fixed at a position of interest and the steady-state con-
centration fluctuations of small numbers of fluorescent
molecules due to thermally induced Brownian motion
are recorded. Applying a temporal correlation analysis
of the fluorescence signal allows to determine concen-
trations and diffusion properties of free molecules and
larger complexes (Gosch and Rigler 2005; Kim et al.
2007; Langowski 2008; Rigler and Elson 2001). Typical
and in particular commercial FCS setups are based on a
confocal laser illumination and fluorescence detection scheme
and are often integrated into a CLSM (Pan et al. 2007;
Wachsmuth et al. 2003).
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FCS features quite standardized experimental conditions so
that a theoretical description renders it possible to determine
quantitatively the diffusion coefficients and absolute concen-
trations and to distinguish different modes of diffusion
(Schwille et al. 1999;Wachsmuth et al. 2000) by simply fitting
analytical model functions to experimental data. As opposed
to FRAP, FCS is insensitive to immobilized molecules. The
correlation time from an FCS experiment typically character-
izes diffusion whereas a major readout of a FRAP experiment,
the half-time of recovery, is often determined by convoluted
diffusion and binding, making FCS and FRAP nicely com-
plementary methods.

Fundamentals

Photobleaching

Photobleaching is the photo-induced irreversible transition of
a fluorophore into a non-fluorescent chemical conformation.
The rate of photobleaching is usually assumed to be propor-
tional to the illumination intensity (Axelrod et al. 1976; Lanni
and Ware 1981). However, many experimental observations
indicate a deviation from linearity (Harms et al. 2001; Song
et al. 1996), which can be explained based on a Jablonski
diagram (Lakowicz 1999), see Fig. 2a: Upon continuous

a

0 50 100 150 200 s
0.0

0.2

0.4

0.6

0.8

1.0
immobile fraction

transiently bound/

slowly mobile fraction

incomplete bleaching/

fully mobile fraction

half time of recovery

prebleach bleach pulse postbleach: first intermediate late

steady state imbalance redistribution of molecules in bleach region

normalized
fluorescence
intensity in
bleach
region

b

d

microscope
• CLSM
• fixed beam

microscope

• widefield
• CLSM
• SD
• TIRF
• LSFM

• scanner
• pattern
• fixed beam

• imaging FRAP
• point FRAP

• imaging + point bleach
• imaging + region bleach
• imaging + pattern bleach

w
id

th
 2

time

time

width

c

diffusion
coefficient
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illumination, molecules are raised from singlet ground state S0
to the excited singlet state S1 and, after a certain delay, the
fluorescence lifetime, decay back upon emission of a photon.
Thus, the steady-state occupation of S1 and of an excited
triplet state T1 depends on the illumination intensity I (Im
et al. 2013). Then, assuming that the photobleaching
process results from the further photo-induced excitation
of fluorophores already in S1 or T1, respectively (Song et al.
1995), the photobleaching rate depends more than linearly
on the illumination intensity, as shown in Fig. 2b for a
fluorophore with fluorescein-like properties (Im et al. 2013).
Therefore, using a CLSM for photobleaching a single spot
into a fluorescent layer (Fig. 2c) creates a 3D profile whose
laterally integrated axial profile agrees quantitatively with the
predictions assuming non-linear photobleaching process-
es (Fig. 2d).

This is beneficial for FRAP experiments: Firstly, increasing
the laser power for the bleach pulse of a FRAP experiment is
more useful than increasing the length of the bleach pulse,
which is also desirable to reduce the effect of diffusion during
the bleach pulse. Secondly, single-photon excitation generally
results in significant unwanted out-of-focus bleaching of the
sample. The non-linear intensity dependence of the
photobleaching rate results in a desirable axial confinement
of the bleach region even for single photon fluorescence
excitation (Braeckmans et al. 2007; van Royen et al. 2009),
not only for two-photon excitation (Brown et al. 1999; Mazza
et al. 2008).

Diffusion and binding

The thermally induced stochastic movement, e.g., of fluores-
cently labelled molecules in a solution or inside a cell is called
diffusion or Brownian motion. This concept can be general-
ized to all thermally driven stochastic processes such as fluc-
tuations in molecular structures. On the macroscopic scale of a
whole cell where large numbers of molecules are involved,
diffusion aims at equilibrating macroscopic concentration gra-
dients, like those generated by depleting the fluorescent mol-
ecules from a certain area of a cell—the very process observed
in a FRAP experiment. The diffusion coefficient characterizes
the relation between the gradient and the resulting flux. From
the point of view of single molecules, which randomly roam
in their environment, concentration fluctuations are generated
when they enter and leave a small observation volume—the
very process observed in an FCS experiment. The area cov-
ered by roaming or the mean squared displacement (MSD),
respectively, increases linearly in time, thus, the correspond-
ing slope of a plot of MSD against time yields the diffusion
coefficient, often given in micrometers per second.

The diffusive behavior of fluorescently labeled biomole-
cules can change as a result of different processes: Firstly, in
complex with intracellular compartments, the MSD often
shows a less than linear time dependence owing to collisions
to and non-specific binding with immobile structures (Saxton
and Jacobson 1997; Schwille et al. 2000; Wachsmuth et al.
2000). Secondly, if molecules bind to larger yet mobile
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complexes, the movement is slowed down, showing a reduced
actual diffusion coefficient. Thirdly, specific binding to im-
mobile cellular structures also leads to a reduced mobility.
Here, it is useful to distinguish three cases: If the binding
reaction is diffusion-limited, a certain fraction of binding sites
is not occupied at any given time, and if a molecule is released
from a binding site, it is rapidly recaptured by another one, and
the molecules appear as one fraction with a reduced effective
diffusion coefficient. In the presence of a detectable fraction of
free molecules, it depends on the ratio of association/
dissociation rates and diffusional “escape rate” from an obser-
vation area whether both a free and a bound fraction can be
identified or whether a coupled description of reaction and
diffusion is required to describe that behavior (Carrero et al.
2003; Müller et al. 2009; Phair et al. 2004; Sprague and
McNally 2005; Sprague et al. 2004; Stasevich et al. 2010a,
b). Here, experimental settings such as the spatial and tempo-
ral sampling or the size and geometry of the bleach ROI in a
FRAP experiment play a crucial role so that this is described
in more detail below.

Imaging FRAP data analysis

For the data analysis of an imaging FRAP experiment, several
correction and normalization steps must or should be applied
independent of the underlying molecular process resulting in
redistribution and recovery. After that, the spatio-temporal
fluorescence distribution can be analyzed analytically or nu-
merically to extract binding, diffusion, and other transport
parameters.

Correction and normalization of intensity values

It is useful to define not only the bleach ROI (“bl” in Fig. 3a),
but also a ROI, which allows extraction of the background
signal (“bg” in Fig. 3a), a ROI covering the overall (total)
fluorescence intensity, e.g., of the bleached cell that is avail-
able for the recovery (“tot” in Fig. 3a) and/or a reference ROI
comprising a non-bleached and topologically separated area,
e.g., a neighboring cell (“ref” in Fig. 3a). Subsequently, for
every time step, the “bg”-averaged background signal is
subtracted from each pixel of the other ROIs (Fig. 3c, d). Next,
for every time step again, the pixel values of the bleach
ROI are divided by the “ref”- or “tot”-averaged pixel
values to account for slow fluctuations such as unwant-
ed yet unavoidable photobleaching during the post-
bleach sequence (scan bleaching) (Fig. 3e). Finally, the
resulting values are normalized to the prebleach values
(Fig. 3f) in order to have full recovery correspond to unity.
These steps can be performed either for each pixel or for the
average of the “bl” ROI. The resulting time traces are subject
to further analysis.

Extraction of diffusion and reaction parameters

The simplest model for binding of diffusive molecules to
immobile structures is determined by the diffusion coefficient
D of free molecules and their association rate kon to and the
dissociation rate koff from binding sites (Fig. 3g). As men-
tioned above, in a FRAP experiment, different cases must be
distinguished (Beaudouin et al. 2006; Carrero et al. 2003;
Phair et al. 2004; Sprague et al. 2004): If the diffusional escape
rate D/A, which depends crucially on the experiment because
A is the area of the bleach ROI, is significantly bigger than the
binding rates (kon, kon), the diffusional recovery is much faster
than the binding-related one (Fig. 3h), and they can easily be
distinguished and evaluated independently. The binding-
related contribution is an exponential recovery whereas the
description of the diffusional one depends crucially on the
geometry of the bleach ROI (Im et al. 2013). On the other
hand (Fig. 3j), if the diffusional rate is much smaller than the
binding rates, one observes an effectively diffusional behavior
with a reduced apparent diffusion coefficient (Wachsmuth
et al. 2003). In the intermediate regime (Fig. 3i), molecules
are captured by a binding site where they dwell for some time
until getting released again, resulting in repeated hopping
between free and bound state before they leave the observa-
tion volume. Thus, a complete coupled reaction–diffusion
scheme must be employed to fit the data by solving the
coupled differential equations analytically (and mostly ap-
proximately), using appropriate coordinate transforms or nu-
merically. Alternatively, molecular dynamics simulations al-
low to model more complex modes of binding and transport
such as broad distributions of affinities, inhomogeneous dis-
tributions of binding sites or facilitated/1D and obstructed
diffusion, e.g., of transcription factors along and within chro-
matin (van Royen et al. 2011).

Obviously, averaging intensities over the bleach ROI im-
proves the signal-to-noise ratio, however, at the expense of
spatial resolution. Since it is always difficult to dissect diffu-
sion and binding and evenmore challenging to decidewhether
the above-mentioned simple bindingmodel or a more intricate
one is required to describe the data, a refined spatial sampling
(as indicated by dashed lines in Fig. 3h, ranging from a few
partitions of the ROI to individual pixels) combined with
numerically solving the differential equations may help
(Beaudouin et al. 2006; Im et al. 2013; Soumpasis 1983).
Often, simple geometries such as squares, rectangular strips,
or circles are chosen that allow to extract averaged intensity
profiles (see above) as a compromise between averaging over
ROIs and spatially resolved analysis (Braeckmans et al. 2003;
Carrero et al. 2003; Müller et al. 2009; Stasevich et al. 2010a;
van Royen et al. 2011). As mentioned above, not only the
lateral geometry, but also the axial profile of the bleach ROI,
which depends on the NA of the objective lens and on the
process of bleaching itself, must be taken into consideration
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carefully (Braeckmans et al. 2007; Mazza et al. 2008; van
Royen et al. 2009).

Recent methodological developments

Consideration of diffusion during bleaching

A considerable source of error may be diffusion during
bleaching, which is usually not taken into consideration. Es-
pecially in the presence of a fast diffusive fraction of mole-
cules and if a CLSM is used for measuring FRAP, the bleach
segment is often long enough to allow a significant amount of

molecules to diffuse across the bleach ROI at the same time.
This results in mis-estimation of diffusive, transiently, and
permanently immobilized fractions and wrong assumptions
for the post-bleach concentration distribution (Weiss 2004).
Recently, both for imaging and for point FRAP, this has been
taken into account explicitly (Im et al. 2013; Kang et al. 2009,
2010), which has made the analysis much more consistent,
also with FCS data.

Cross-validation and combination with FCS

A crucial step of FRAP data analysis is a proper separation of
diffusion and binding contributions. However, while FRAP is
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coefficient D, area A, and the reaction rates kon and koff, binding events
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very well suited to study slower processes like association to
and dissociation from immobile binding sites, the often much
faster diffusion is difficult to assess. On the other hand, FCS is
conceptually “blind” for immobilized or slowly binding mol-
ecules. Therefore, a combination of FRAP and FCS is most
promising to extract more reliably both diffusion and binding

properties, as implied by the conceptual proximity and sug-
gested already 30 years ago (Icenogle and Elson 1983a, b;
Petersen and Elson 1986).

More recently, this was applied in different ways for mon-
itoring protein dynamics in living cells: Both methods were
used separately to study the binding properties of
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fraction is stably incorporated into chromatin, probably via interaction
with various binding partners (class III). Values for diffusion coefficients
and residence times are given for HP1a. Taken from Müller et al. (2009)
with permission. bModel for the nuclear mobility of REF2-II andMagoh.

Apparent diffusion coefficients were calculated and averaged from FRAP
and FCS data (REF2-II) or taken from FRAP data (Magoh). The reaction
rates of transient binding of REF2-II to immobile sites in speckles were
determined from FRAP. The exchange between the fast and the slowly
diffusive fraction was not observed in FCS and FRAP, so that an upper
limit for the rate was estimated (dashed straight reaction arrows). The
exchange between the diffusive and the immobile pool of the mRNP
complex was not observed in FRAP, so an upper limit from the duration
of the post-bleach segments could be estimated (dashed curved reaction
arrows). Taken from Im et al. (2013) with permission
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heterochromatin protein 1 (HP1) to chromatin (Müller et al.
2009). Imaging FRAP in combination with analytical and
numerical fitting of the data, continuous fluorescence
photobleaching (CP; another photobleaching method to
extract especially reaction rates; Arkhipov et al. 2007; Delon
et al. 2006; Im et al. 2013; Wachsmuth et al. 2003), and FCS
allow the identification of different classes of HP1 binding
sites on chromatin and quantifying of diffusion coefficients
and reaction rates in a spatially differentiated way, i.e., by
distinguishing transcriptionally more active and more open
euchromatin from transcriptionally less active and more con-
densed heterochromatin (Fig. 4a; Müller et al. 2009).

In another systematic study on the combination of FRAP
and FCS (Stasevich et al. 2010b), the authors compared very
carefully the different regimes for binding rates and diffusion
coefficients that can be assessed with either of the methods.
By studying the chromatin binding properties of the gluco-
corticoid receptor (GR), a transcription factor, only the com-
bination helped to estimate accuracies and to rule out respec-
tive systematic errors.

An evenmore explicit combination of FRAP and FCS even
on the instrument level was carried out recently (Im et al.
2013): A CLSM equipped for FCS was modified for allowing
point FRAP resulting in simultaneous FRAP and FCS mea-
surements. Like that, point FRAP benefits from the microsec-
ond time resolution of FCS equipment, making diffusion
measurements even of free yellow fluorescent protein (YFP)
more accurate. This approach was then applied to characterize
the mobility of the exon–exon junction complex proteins
REF2-II andMagoh, suggesting that they bind to a maturating
mRNA protein complex (mRNP) in a protein-specific and
spatially differential way (Fig. 4b; Im et al. 2013).

Combination with other CLSM-based approaches

The time resolution of CLSM-based imaging FRAP is inher-
ently limited by the scanning velocity and frame rate of the
microscope such that diffusion (see above) and very short-lived
interactions with immobilized binding sites are difficult or
impossible to resolve. However, the raster-scanning process of
image formation of the CLSM provides a well-defined spatio-
temporal relationship of pixel intensity values, which was used
in a recent study (Erdel and Rippe 2012). In this study, the
redistribution after photobleaching of a circular area of ISWI
chromatin remodelers was analyzed. Pixel-wise photobleaching
profile evolution analysis (3PEA) relates to FRAP in the same
way as raster image correlation spectroscopy (RICS; Digman et
al. 2005) does to FCS: This allows extraction of both the free
diffusion coefficient and the diverse dissociation rates of Snf2H
and Snf2L from chromatin with very high accuracy.

Automated high-content microscopy was developed to
study the impact of large numbers of proteins or genes, e.g.,
on cellular pathways. In addition, it is useful to overcome the

sometimes-anecdotal character of experimental observations
by simply scaling up the number of replicates. A FRAP
experiment is a complex sequence of observations and deci-
sions, such as finding an appropriate bleach ROI in a preview
image and configuring and starting the FRAP imaging. How-
ever, these steps could also be delegated to a computer such
that imaging FRAP experiments could be carried out in an
automated way (Conrad et al. 2011), revealing the cell-cycle
dependence of HP1 chromatin binding.

Conclusion

In summary, FRAP is a powerful fluorescence-microscopy-
based method that assesses quantitatively the transport, diffu-
sion, and binding processes in living cells and tissue. An ever-
increasing number of applications range from a comparison of
more basic and descriptive parameters, e.g., to describe the
response to a certain treatment, to a full biophysical charac-
terization of intracellular pathways towards systems biology.
En route from its invention in the 1970s, limitations and
pitfalls became obvious. Therefore, nowadays, especially the
combination with other advanced fluorescence microscopy
and computational methods, the commercial availability and
the accessibility of equipment, e.g., in imaging facilities, it has
come of age and it is straightforward to use for a variety of cell
biology applications.
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