Digital Images

Bi/BE177: Principles of Modern Microscopy

Vikas Trivedi (viktri@caltech.edu) California Institute of Technology

Outline

Digital image formation

Image properties

Image processing

Available softwares

Resources

Outline

Digital image formation

Image properties

Image processing

Available softwares

Microscopy as a compromise

Competition between different performance parameters

Microscopy in biological context

Competition between different performance parameters

Life technologies, Invitrogen

Photo-toxicity

Always best to have the best image settings

-better to optimize acquisition than rely on post-acquisition processing

Something really simple :-)

Soiled Lens

Soiled Camera and dirt

Building up a 3D image

Building up a 2D image

1D detectors (PMT, GaAsP, APD)

Imaging at the right microscope setting is crucial

Suitable laser power

Suitable detector with a good quantum efficiency

Imaging at the right microscope setting is crucial

Suitable detector gain

Digitization

https://andiemer.files.wordpress.com/2009/11/14-picture-1.png

Carl Zeiss

Correct Sampling

Wikipedia

Pixel dwell-time

Outline

Digital image formation

Image properties

Image processing

Available softwares

Image is a matrix of numbers

Gray values

How high can the numbers be?

	230	221	
	250	203	
	240	202	
		220	200
			230

$$(0-11)_{\text{binary}} = (0-1x2^{1}+1x2^{0})_{\text{decimal}}$$

= $(0-3)_{\text{decimal}}$

```
0 -1 1-bit 0 - 1
0 -11 2-bit 0 - 3
: : : :
0 -111111111 8-bit 0 - 255
: : : :
0 -1111111111111 12-bit 0 - 4095
: : : :
```

Image bit-depth

Colored Images

Colored Images

Stacks and Hyper-stacks

Meta-data

metadata value

FileName /Labs/images/EX36-CG-3.lsm

FileModDate 23-Aug-2011 13:20:11

FileSize 877951876

Format TIF

Width 2048

Height 1024

BitDepth 16

ColorType Indexed

BitsPerSample 16

Compression Uncompressed

PhotometricInterpretation RGB Palette

MaxSampleValue 65535

MinSampleValue 0

Binning 1

PixelResolutionUnitX microns

PixelResolutionUnitY microns

PixelResolutionUnitZ microns

PixelResolutionX 0.155370

PixelResolutionY 0.155370

PixelResolutionZ 4.754000

- information about image content
- acquisition parameters
- manufacturer-specific data

Outline

Digital image formation

Image properties

Image processing

Available softwares

Resources

Contrast adjustment

Input Intensity

Contrast adjustment

Input Intensity

Output = c. (Input Image)^(gamma)

Binning

Interpolation

nearest neighbor impose a finer grid, pick nearest pixel in original

bilinear weighted average of 2 x 2 neighbors

bicubic
weighted average
of 4 x 4 neighbors

Average

single frame

average of 20

average of 100

Binary images (thresholding)

Mask

Spatial filtering

Smoothing

Average (Mean)

Disk

Median

Gaussian

Spatial filtering

Derivatives

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2(x, y)$$

Gradient

 $\left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right|$

Laplacian

$$\nabla^2 f(x,y)$$

LoG

Combined filtering

Edge detection and segmentation

Image similarity

Image differences

Image similarity

Image correlation

Image convolution

Intensity Projections

Image transforms

Fourier transform

Outline

Digital image formation

Image properties

Image processing

Available softwares

Resources @ Caltech

Bi 270. **Special Topics in Biology**. *Units to be arranged*; *first, second, third terms*. Students may register with permission of the responsible faculty member.

Bi 270/BioE 240 course offered by Dr. Alphan Altinok.

Image formats

raster: storing as a grid

vector: storing shapes

compression/no compression reducing irrelevant/redundant information

TIFF	compression metadata annotation multiple frames
PNG	alpha channel compression
JPEG	compression RGB storage

LSM, LEI, OIB encapsulated TIFF images

many others: BMP, GIF, RAW, XWD, ...

Available softwares

Amira **Bio-Formats** Comstat2 **Endrov** FocalPoint i3dcore ImageMagick Imago ITK-VTK Iqm **MIPAV** PIL VisAD VisBio Morphographix Omero

Bitplane Imaris CellProfiler
Farsight Fiji
IDL ImageJ
ImagePro Imglib
Macnification Metamorph
Qu-Matlab V3D
XuvTools Bisque
OpenCV

List compiled by Dr. Alphan Altinok

Questions