Imaging applications in Neurobiology

Bi177

Wan-Rong (Sandy) Wong 02-28-17

Big Questions in Neurobiology

- Connectome: anatomical connection
- Functional connectome
 - differentiate neuron types
 - neural circuits of behavior
 - computational models
- Understand and treat brain disorders

Outline

- Neurobiology recaps
- Types of neuronal activity indicators
- Commonly used devices
- Example: microfluidics in *C. elegans*

How neurons communicate

Imaging neuronal activity

- Electrode recording
- Optical imaging

Indicators of neuronal activity

- vesicular release indicators
- neurotransmitter indicators
- voltage indicators
- calcium indicators

Vesicular release indicator

- Vesicularly localized genetically encoded indicators (GEPIs)
- Can visualize responses integrated over large numbers of synapses or APs

Neurotransmitter indicators

- Neurotransmitters are released into synaptic cleft in high concentration and rapid kinetic (removed within 1 ms) manners.
- Glutamate, Acetylcholine, GABA, glycine.

Voltage indicators

- Detect transmembrane voltage changes
 - transient depolarization
 - spike generation
- Often highly phototoxic
 - incapable of long-term imaging of single cell
 - no genetically targeted delivery

Calcium indicators

Capture the [Ca²⁺] dynamic

- > extracellular Ca²⁺ influx
- > release of internal storage
- > removal of Ca²⁺

Grienberger & Konnerth, 2012. Neuron

- Allow long-term time-lapse imaging
 - Sampling intervals 30-60 ms
 - single AP: 3-5 ms

Ca²⁺ indicators

B Chemical calcium indicator

C FRET-based GECI

D Single-fluorophore GECI

GCaMPs

Grienberger & Konnerth, 2012. Neuron

- Genetically Encoded Calcium Indicator (GECIs)
- Calmodulin (CaM) is an important post-synaptic density protein that binds Ca²⁺
- Ca²⁺binds to CaM and causes a conformational change that causes GFP fluoresence

GECIs

GECI	Maximum Δ <i>F/F</i> <i>in vitro</i> ^a	${\sf Ca^{2+}}$ -free brightness $({\sf mM^{-1}\ cm^{-1}})^b$	Ca ²⁺ -saturated brightness (mM ⁻¹ cm ⁻¹) ^b	K _d in vitro (nM) ^c	$\Delta F/F$ per AP in tissue ^d	Half-decay rate in tissue (ms)e	Refs.
YC3.60	-0.66 (ECFP)	8.8 ^f	3.1	780	-0.01	410	137,138
	+0.77 (cpVenus)	2.4 ^f	11		+0.02		
YC3.60 3GS	-0.66 (ECFP)	8.8 ^g	3.1	140	-0.01	470	139,140
	+0.77 (cpVenus)	2.4g	11		+0.01		
D3cpV	-0.46 (ECFP)	7.3 ^h	3.6	530	-0.03	9,500	141,142
	+1.1 (cpVenus)	4.8 ^h	10		+0.02		
TN-XXL	-0.5 (ECFP)	9.6 ⁱ	5.4	800	-0.01	1,600	142,143
	+1.0 (cpCitrine)	1.5 ⁱ	10		+0.02		
Twitch-2B	-0.77 (mCerulean3)	22 ^j	5.8	200	-0.12	2,100	82,142
	+0.87 (cpVenus)	0.83 ^j	12		+0.12		
GCaMP3	+12	1.8	23	540	+0.14	650	114,142
GCaMP5k	+9.4	ND	ND	190	+0.04	270	72,144
GCaMP6f	+52	0.70	37	380	+0.22	140	72,91
GCaMP6s	+63	0.66	42	140	+0.25	550	72
R-CaMP2	+4.8	2.3 (1.6) ^k	11	69	+0.60	150	106
jRGECO1a	+11	1.0 (0.74)k	12	150	+0.19	200	7
jRCaMP1b	+6.2	4.0 (4.0) ^k	29	712	NDI	ND	7

Advantages of optical imaging

- Less biased than electrodes
 - unfavorable cell morphology, weak electrical dipoles, extracellular tissues
- Reveal spatiotemporal activity pattern
 - dendritic integration, voltage propagation, dendritic spiking
- Minimizing neuronal damages
- Genetically encoded

Disadvantages of optical imaging

- Transduction efficiency and toxicity
- Limited by the inherent quantum mechanical randomness of photon emission and detection
- Influenced by indicator's fluorescence response curve and response kinetics
- Good representation of neuronal activity?

Outline

- Neurobiology recaps
- Types of neuronal activity indicators
- Commonly used devices
- Example: microfluidics in *C. elegans*

Common imaging devices

Wide-field microscopy

Common imaging devices

Laser scanning microscopy

Confocal microscope

D Two-photon microscope

Common imaging devices

Recording in freely moving animals

Outline

- Neurobiology recaps
- Types of neuronal activity indicators
- Commonly used devices
- Example: microfluidics in *C. elegans*

Microfluidics in *C. elegans*

0.000 sec

aversive avoidance response to copper

Ca²⁺ imaging device

ASH Video

Future approaches to technical challenges

Protein engineering:

Voltage-sensors, calcium indicators, and other indicators of neuron activity with fast kinetics and large changes in fluorescence

- Optics:
- LEDs with specific wavelength and constant illumination
- Filters/dichorics for unwanted wavelengths
- Multimirror arrays for targeted illumination
- Cameras that can capture images quickly
- Big data processing

Questions?

