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Spectral imaging: what is it
and why should | use it?



Why spectral imaging?
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Fluorescence spectra

FITC Spectra
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How do we collect spectral
datasets?



Types of Spectral detection
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Fic. 3. Various methods of spectral imaging systems. They can be divided into four main methods: wavelength-scan (A-D), spatial scan (E), time scan (F)
and “compromise” methods (G). In wavelength-scan methods, the whole image is measured one wavelength at a time. This can be realized using either a
circular variable filter (A), a set of filters (B), a liquid crystal variable filter (C) or an acousto-optic variable filter (D). Spatial-scan methods use a dispersion
element, either a grating or prism (E) and the image has to be scanned along at least one axis. There are also confocal microscopes that use a dispersive ele-
ment and scan the image point by point. In time-scanning method (F), the whole image is measured after passing through an interferometer (or other opti-
cal elements). In order to calculate the spectrum at each pixel a mathematical transformation has to be carried out, for example, a Fourier transform. In
“compromise” methods (G) only a few spectral ranges are measured and the FOV is limited, but the measurement is fast.

Garini et al, Cytometry Part A, 2006



Spectral imaging methods: Spatial-scan

3 Different ways used by microscope companies
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Conventional vs spectral detection
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Spectral detection

Fluorescence microscope
spectral detector

Dataset: A stack

Like a Z-stack, but each slice represents

wavelength rather than depth

Diffraction

grating
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Emitted light from specimen

Garini Y, Young IT, McNamara G. 2006. Cytometry. 69A:735-747.

Spectral Image Data Cube



Problem: Overlap
Solution: pectral Imaging
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Result: pectral Unmixing a' A, T




How do we unmix these
datasets?



Input: A stack
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Output: unmixed images Atto633 Atto655




Linear unmixing

* We can make a formula where the summed pixel intensity across
lambda (S) needs to be divided up into each reference outputimage (R1

and R2).

S(A) = %,*R1(A) + %,*R2(\)

* We needto calculate thesevariables (%, and %,) such that the intensity
is CLOSEST to (least different from) the reference curves

* To be least different, we need to solve this formula for %, and %, so that
we get the smallest value possible

S(A) —%,*R1(A) —%,™R2(A) = minimum

* Since we have multiple variables to solve for simultaneously, we need to
use some fancy linear algebra and matrix math

e Atits core, unmixingalgorithms can perform a least squares analysis to
test each possible % value to get this function to its minimum

S*[S(N) = [%,*R1(A) + %,*R2(\)]]2



Least squares function

S*[S(N) — [%,*R1(A) + %,*R2(M\)]]?

[
%,

[s)
%,

Compares the measured spectrum
with all possible mixtures of
reference spectra, and solves for the
minimal difference between
measured and reference spectra

Results:

Values for %, and %, that tell you
what proportion of your measured
value belongs in each output file

Number of references must =

Linear Unmixing for Dummies

number for fluorophores in the
image.

parfor i1 = 1:N

end

channels(:,1i)

Lsgnonneg(refSpectra, lambdaStack(:,i));
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Input: A stack

640nm 650nm 660nm 670nm
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Output: unmixed images Atto633 Atto655




Input: A stack
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Atto633 =150*0.90 =135

Output: unmixed images

Summed pixel gray value: 150

Atto633

%, = 0.90
%2 =0.10

Atto655 =150*0.10 =15

Atto655




Input: A stack

640nm

O <+ ¥

Atto633 =200*0.05 =10

Output: unmixed images

Summed pixel gray value: 200

Atto633

%1 = 005
%2 =0.95

Atto655 =200*0.95= 190

Atto655




Input: A stack

640nm
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Output: unmixed images

Over and over
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and over and over
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Test - Unmixing 10 fluorophores

10 tubes L. buccalis U U U U
10 Probes added : : : :

Reference slides ‘ ‘ ‘ ‘ ‘ AN G NG S NENAN h \G

Mix labeled cells !

Mix slide \ \ > \
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MIP
Experimental
Lambda Stack

*Notice how
thereisnot
one imagein
the lambda
stack where
you can see
only one cell
population
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Can we unmix more than
fluorophore spectra?



Removing Autofluorescence

Unmixed channels + AF AF Unmixed Channels - AF
. —




Spectral Summary

1. Use spectrallyseparated fluorophoreswhenyou can, if not
possible, spectral imaging and unmixing!

2. Methods: generating spectra by selectively imaging one
wavelength at a time, or imaging a range of wavelengths
simultaneously.

3. Canbeused forseparatinghighly overlappingspectra and
removing unwanted autofluorescence.

4. Reference library forunmixingmust equal number of
fluorophoresin sample.

5. Unmixing:
Input: Lambda stack, references

Output: One channel per reference, each containinga
percent of it’s contribution of original measured pixel.



History of the Zeiss spectral detector

* Where did the idea of a
multichannel detector
come from?

e Collaboration between
the Jet Propulsion
Laboratory, Scott
Fraser’s lab here at
Caltech and Zeiss




History of the Zeiss spectral detector

e Zeiss META had 8
channel detector

* Replaced by 32 channel
Quasar detector

32 Channel Linear Ikrra{e
Multianode l;hotomultlpl r

or
Spectral Imaging
Confocal Microscopy
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Learning More

Introduction to spectral imaging and linear unmxing

http://zeiss-
campus.magnet.fsu.edu/articles/spectralimaging/introduction.html

Interactive spectral unmixing tutorial

http://zeiss-
campus.magnet.fsu.edu/tutorials/spectralimaging/linearunmixing/in
dexflash.html

Spectral Database
http://www.spectra.arizona.edu/




